NP-completeness of the energy barrier problem without pseudoknots and temporary arcs | Natural Computing Skip to main content

Advertisement

Log in

NP-completeness of the energy barrier problem without pseudoknots and temporary arcs

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Knowledge of energy barriers between pairs of secondary structures for a given DNA or RNA molecule is useful, both in understanding RNA function in biological settings and in design of programmed molecular systems. Current heuristics are not guaranteed to find the exact energy barrier, raising the question whether the energy barrier can be calculated efficiently. In this paper, we study the computational complexity of a simple formulation of the energy barrier problem, in which each base pair contributes an energy of −1 and only base pairs in the initial and final structures may be used on a folding pathway from initial to final structure. We show that this problem is NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Chen SJ, Dill KA (2000) RNA folding energy landscapes. Proc Nat Acad Sci 97(2):646–651

    Google Scholar 

  • Flamm C, Fontana W, Hofacker IL, Schuster P (2000) RNA folding at elementary step resolution. RNA 6:325–338

    Google Scholar 

  • Flamm C, Hofacker IL, Stadler PF, Wolfinger MT (2002) Barrier trees of degenerate landscapes. Zeitschrift für Physikalische Chemie 216:155–174

    Article  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and Intractability: a guide to the theory of NP-completeness. W. H. Freeman & Co., New York, NY, USA

    MATH  Google Scholar 

  • Graham R, Knuth D, Patashnik O (1989) Concrete mathematics: a foundation for computer science. Addison-Wesley, Reading, MA, USA

    MATH  Google Scholar 

  • Kameda A, Yamamoto M, Uejima H, Hagiya M, Sakamoto K, Ohuchi A (2005) Hairpin-based state machine and conformational addressing: design and experiment. Nat Comput 4:103–126

    Article  MathSciNet  Google Scholar 

  • Hagiya M, Yaegashi S, Takahashi K (2006) Computing with hairpins and secondary structures of DNA. In: Chen J, Jonoska N, Rozenberg G (eds) Nanotechnology: science and computation, natural computing series. Springer, Heidelberg, pp 293–308

  • Maňuch J, Thachuk C, Stacho L, Condon A (2009) NP-completeness of the direct energy barrier problem without pseudoknots. In: Proceedings of DNA 15, Fayetteville, Arkansas, USA, Lecture Notes in Computer Science, vol 5877:106–115

  • Morgan SR, Higgs PG (1998) Barrier heights between ground states in a model of RNA secondary structure. J Phys A Math Gen 31:3153–3170

    Article  MATH  Google Scholar 

  • Russell R, Zhuang X, Babcock H, Millett I, Doniach S, Chu S, Herschlag D (2002) Exploring the folding landscape of a structured RNA. Proc Nat Acad Sci 99:155–160

    Article  Google Scholar 

  • Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588

    Article  Google Scholar 

  • Shcherbakova I, Mitra S, Laederach A, Brenowitz M (2008) Energy barriers, pathways, and dynamics during folding of large, multidomain RNAs. Curr Opin Chem Biol 12(6):655–666

    Google Scholar 

  • Simmel FC, Dittmer WU (2005) DNA nanodevices. Small 1:284–299

    Article  Google Scholar 

  • Tang X, Thomas S, Tapia L, Giedroc DP, Amato NM (2008) Simulating RNA folding kinetics on approximated energy landscapes. J Mol Biol 381:1055–1067

    Article  Google Scholar 

  • Thachuk C, Maňuch J, Rafiey A, Mathieson LA, Stacho L, Condon A (2010) An algorithm for the energy barrier problem without pseudoknots and temporary arcs. In: Proceedings of Pacific symposium on biocomputing (PSB), Honolulu, Hawaii, USA, pp 108–119

  • Treiber DK, Williamson JR (2001) Beyond kinetic traps in RNA folding. Curr Opin Struct Biol 11:309–314

    Article  Google Scholar 

  • Uejima H, Hagiya M (2004a) Analyzing secondary structure transition paths of DNA/RNA molecules. In: DNA computing. Lecture notes in computer science, vol 2943. Springer, Heidelberg, pp 86–90

  • Uejima H, Hagiya M (2004b) Secondary structure design of multi-state DNA machines based on sequential structure transitions. In: Proceedings of DNA9, Madison, WI, USA, Lecture notes in computer science, vol 2943. Springer, Berlin, pp 74–85

  • van Batenburg FHD, Gultyaev AP, Pleij CWA, Ng J, Oliehoek J (2000) Pseudobase: a database with RNA pseudoknots. Nucl Acids Res 28(1):201–204

    Article  Google Scholar 

  • Wolfinger MT (2001) The energy landscape of RNA folding. Master’s thesis, University Vienna

  • Yin P, Choi H, Calvert C, Pierce N (2008) Programming biomolecular self-assembly pathways. Nature 451:318–322

    Article  Google Scholar 

  • Yurke B, Turberfield AJ, Mills AJJ, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Maňuch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maňuch, J., Thachuk, C., Stacho, L. et al. NP-completeness of the energy barrier problem without pseudoknots and temporary arcs. Nat Comput 10, 391–405 (2011). https://doi.org/10.1007/s11047-010-9239-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-010-9239-4

Keywords

Navigation