Abstract
In this paper, we search for theoretical limitations of the Tile Assembly Model (TAM), along with techniques to work around such limitations. Specifically, we investigate the self-assembly of fractal shapes in the TAM. We prove that no self-similar fractal weakly self-assembles at temperature 1 in a locally deterministic tile assembly system, and that certain kinds of discrete self-similar fractals do not strictly self-assemble at any temperature. Additionally, we extend the fiber construction of Lathrop et al. (2009) to show that any discrete self-similar fractal belonging to a particular class of “nice” discrete self-similar fractals has a fibered version that strictly self-assembles in the TAM.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adleman LM, Cheng Q, Goel A, Huang M-D, Kempe D, de Espanés PM, Rothemund PWK (2002) Combinatorial optimization problems in self-assembly. In: Proceedings of the thirty-fourth annual ACM symposium on theory of computing, pp 23–32
Adleman LM, Kari J, Kari L, Reishus D (2002) On the decidability of self-assembly of infinite ribbons. In: Proceedings of the 43rd annual IEEE symposium on foundations of computer science, pp 530–537
Aggarwal G, Goldwasser MH, Kau M-Y, Schweller RT (2004) Complexities for generalized models of self-assembly. In: Proceedings of ACM-SIAM symposium on discrete algorithms
Doty D, Gu X, Lutz JH, Mayordomo E, Moser P (2005) Zeta-dimension. In: Proceedings of the thirtieth international symposium on mathematical foundations of computer science, Springer-Verlag, NY, pp 283–294
Graham RL, Knuth DE, Patashnik O (1994) Concrete mathematics. Addison-Wesley, Reading
Kao M-Y, Schweller RT (2007) Reducing tile complexity for self-assembly through temperature programming. In: Proceedings of the 17th annual ACM-SIAM symposium on discrete algorithms (SODA 2006), Miami, Florida, Jan 2006, pp 571–580
Kao M-Y, Schweller RT (2008) Randomized self-assembly for approximate shapes, International Colloqium on Automata, Languages, and Programming (ICALP) In: Aceto L, Damgård I, Goldberg LA, Halldórsson MM, Ingólfsdóttir A, Walukiewicz I (eds) Lecture notes in computer science, vol 5125. Springer, Berlin, pp 370–384
Kautz SM, Lathrop JI (2009) Self-assembly of the Sierpinski carpet and related fractals. In: Proceedings of the fifteenth international meeting on DNA computing and molecular programming, Fayetteville, Arkansas, USA, 8–11 June 2009 (to appear)
Lathrop JI, Lutz JH, Patitz Matthew J, Summers SM (2008) Computability and complexity in self-assembly. In: Proceedings of the fourth conference on computability in Europe Athens, Greece, 15–20 June 2008
Lathrop JI, Lutz JH, Summers SM (2009) Strict self-assembly of discrete Sierpinski triangles. Theor Comp Sci 410:384–405
Majumder U, LaBean TH, and Reif JH (2007) Activatable tiles for compact error-resilient directional assembly. In: Thirteenth international meeting on DNA computing (DNA 13), Memphis, Tennessee, 4–8 June 2007
Rothemund PWK (2001) Theory and experiments in algorithmic self-assembly. Ph.D. thesis, University of Southern California, December
Rothemund PWK, Winfree E (2000) The program-size complexity of self-assembled squares (extended abstract), STOC ’00. In: Proceedings of the thirty-second annual ACM symposium on theory of computing, New York, USA, ACM, pp 459–468
Seeman NC (1982) Nucleic-acid junctions and lattices. J Theor Biol 99:237–247
Soloveichik D, Winfree E (2007) Complexity of self-assembled shapes. SIAM J Comp 36(6):1544–1569
Wang H (1961) Proving theorems by pattern recognition—II. Bell Syst Tech J XL(1):1–41
Wang H (1963) Dominoes and the AEA case of the decision problem. In: Proceedings of the symposium on mathematical theory of automata, New York, 1962, Polytechnic Press of Polytechnic Institute of Brooklyn, Brooklyn, NY, pp 23–55
Winfree E (1998) Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute of Technology, June
Acknowledgments
We thank David Doty, Jim Lathrop, Jack Lutz, and Aaron Sterling for useful discussions. We would especially like to thank an anonymous reviewer whose detailed comments have substantially improved the final version of this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Preliminary version appeared in the Proceedings of The Fourteenth International Meeting on DNA Computing (DNA 14), Prague, Czech Republic, June 2–6, 2008. This author’s research was supported in part by NSF-IGERT Training Project in Computational Molecular Biology Grant number DGE-0504304.
Rights and permissions
About this article
Cite this article
Patitz, M.J., Summers, S.M. Self-assembly of discrete self-similar fractals. Nat Comput 9, 135–172 (2010). https://doi.org/10.1007/s11047-009-9147-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11047-009-9147-7