Abstract
It is well known that the iterative adaptive approach (IAA) is an effective direction-of-arrival (DOA) estimation method for large aperture array, high signal-to-noise ratio (SNR) and large source separation. However, its derivation is obtained by minimizing a weighted least square cost function without considering the sparsity of solution, it cannot work properly in low SNR, small aperture array and small source separation scenarios. In this paper, to address this problem, the weighted \(\ell _2\)-norm based IAA, namely as WIAA, is proposed to provide accurate DOA utilizing acoustic vector sensor array (AVSA). First, to improve the sparsity of solution for IAA, the auxiliary cost function with respect to the signal, which is penalized by the \(\ell _{2}\)-norm with a user parameter, is reconstructed based on the spatial sparsity of signal. Then, to obtain an analytical solution, the Majorization-minimization algorithm is used to turn the penalty term with a user parameter into a weighted \(\ell _2\)-norm one. Finally, the sparse solution is quantified by the Frobenius norm properties. Several simulation and experimental results verify the superiority of the WIAA method compared to some other existing algorithms.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shang, Z., Zhang, W., Zhang, G., Zhang, X., Zhang, L., & Wang, R. (2020). A study on mems vector hydrophone and its orientation algorithm. Sensor Review, 40(2), 191–201.
Najeem, S., Kiran, K., Malarkodi, A., & Latha, G. (2017). Open lake experiment for direction of arrival estimation using acoustic vector sensor array. Applied Acoustics, 119, 94–100.
Sun, D., Ma, C., Yang, T., Mei, J., & Shi, W. (2020). Improving the performance of a vector sensor line array by deconvolution. IEEE Journal of Oceanic Engineering, 43(3), 1063–1077.
Ramamohan, K. N., Comesaña, D. F., & Leus, G. (2018). Uniaxial acoustic vector sensors for direction-of-arrival estimation. Journal of Sound and Vibration, 437, 276–291.
Wu, Y., Hu, Z., Luo, H., & Hu, Y. (2014). Source number detectability by an acoustic vector sensor linear array and performance analysis. IEEE Journal of Oceanic Engineering, 39(4), 769–778.
Qi, Y., Zhou, S., Liang, Y., Du, S., & Liu, C. (2020). Passive broadband source depth estimation in the deep ocean using a single vector sensor. The Journal of the Acoustical Society of America, 148(1), EL88–EL92.
Shi, S.-G., Li, Y., Zhu, Z.-R., & Shi, J. (2019). Real-valued robust doa estimation method for uniform circular acoustic vector sensor arrays based on worst-case performance optimization. Applied Acoustics, 148, 495–502.
Agarwal, A., Agrawal, M., & Kumar, A. (2020). Higher-order-statistics-based direction-of-arrival estimation of multiple wideband sources with single acoustic vector sensor. IEEE Journal of Oceanic Engineering, 45(4), 1439–1449.
Zhang, J., Xu, X., Chen, Z., Bao, M., Zhang, X.-P., & Yang, J. (2020). High-resolution doa estimation algorithm for a single acoustic vector sensor at low snr. IEEE Transactions on Signal Processing, 68, 6142–6158.
Fauziya, F., Lall, B., & Agrawal, M. (2018). Impact of vector sensor on underwater acoustic communications system. IET Radar, Sonar & Navigation, 12(12), 1500–1508.
Naeem, K., Chung, Y., & Kwon, I.-B. (2017). Highly sensitive two-dimensional bending vector sensor using an elliptic two-core pcf. IEEE Photonics Technology Letters, 30(3), 273–276.
Stinco, P., Tesei, A., Ferri, G., Biagini, S., Micheli, M., Garau, B., LePage, K. D., Troiano, L., Grati, A., & Guerrini, P. (2020). Passive acoustic signal processing at low frequency with a 3-d acoustic vector sensor hosted on a buoyancy glider. IEEE Journal of Oceanic Engineering, 46(1), 283–293.
Khan, S., & Wong, K. T. (2020). A six-component vector sensor comprising electrically long dipoles and large loops-to simultaneously estimate incident sources’ directions-of-arrival and polarizations. IEEE Transactions on Antennas and Propagation, 68(8), 6355–6363.
Li, S., Yang, S., & Liang, J. (2020). Recognition of ships based on vector sensor and bidirectional long short-term memory networks. Applied Acoustics, 164, 107248.
Nehorai, A., & Paldi, E. (1994). Acoustic vector-sensor array processing. IEEE Transactions on signal processing, 42(9), 2481–2491.
Hawkes, M., & Nehorai, A. (1998). Acoustic vector-sensor beamforming and capon direction estimation. IEEE transactions on signal processing, 46(9), 2291–2304.
Wang, B., Chen, F., & Ge, H. (2020). Subspace projection semi-real-valued mvdr algorithm based on vector sensors array processing. Neural Computing and Applications, 32(1), 173–181.
Xiaofei, Z., Ming, Z., Han, C., & Jianfeng, L. (2014). Two-dimensional doa estimation for acoustic vector-sensor array using a successive music. Multidimensional Systems and Signal Processing, 25(3), 583–600.
Liu, A., Yang, D., Shi, S., Zhu, Z., & Li, Y. (2019). Augmented subspace music method for doa estimation using acoustic vector sensor array. IET Radar, Sonar & Navigation, 13(6), 969–975.
Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.
Shi, S., Li, Y., Yang, D., Liu, A., & Zhu, Z. (2020). Doa estimation of coherent signals based on the sparse representation for acoustic vector-sensor arrays. Circuits, Systems, and Signal Processing, 39, 969–982.
Shi, S., Li, Y., Yang, D., Liu, A., & Shi, J. (2020). Sparse representation based direction-of-arrival estimation using circular acoustic vector sensor arrays. Digital Signal Processing, 99, 102675.
Yardibi, T., Li, J., Stoica, P., Xue, M., & Baggeroer, A. B. (2010). Source localization and sensing: a nonparametric iterative adaptive approach based on weighted least squares. IEEE Transactions on Aerospace and Electronic Systems, 46(1), 425–443.
Zhang, Y., Jakobsson, A., Zhang, Y., Huang, Y., & Yang, J. (2018). Wideband sparse reconstruction for scanning radar. IEEE Transactions on Geoscience and Remote Sensing, 56(10), 6055–6068.
Huang, P., Xia, X.-G., Liu, X., Jiang, X., Chen, J., & Liu, Y. (2019). A novel baseline estimation method for multichannel hrsw sar system. IEEE Geoscience and Remote Sensing Letters, 16(12), 1829–1833.
Malek-Mohammadi, M., Babaie-Zadeh, M., & Skoglund, M. (2015). Performance guarantees for schatten-p quasi-norm minimization in recovery of low-rank matrices. Signal Processing, 114, 225–230.
Sun, Y., Babu, P., & Palomar, D. P. (2016). Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Transactions on Signal Processing, 65(3), 794–816.
Tan, X., Roberts, W., Li, J., & Stoica, P. (2010). Sparse learning via iterative minimization with application to mimo radar imaging. IEEE Transactions on Signal Processing, 59(3), 1088–1101.
Jennings, A., & McKeown, J. J. (1992). Matrix computation. New York: John Wiley & Sons Inc.
Petersen, K., & Pedersen, M. (2012). The matrix cookbook. Technical Univ. Denmark, Kongens Lyngby, Denmark, Tech. Rep, vol. 3274, version 20121115.
Zhao, A., Ma, L., Hui, J., Zeng, C., & Bi, X. (2018). Open-lake experimental investigation of azimuth angle estimation using a single acoustic vector sensor. Journal of Sensors, 2018, 1–11.
Hawkes, M., & Nehorai, A. (2001). Acoustic vector-sensor correlations in ambient noise. IEEE Journal of Oceanic Engineering, 26(3), 337–347.
Wu, X., Zhu, W.-P., Yan, J., & Zhang, Z. (2018). Two sparse-based methods for off-grid direction-of-arrival estimation. Signal Processing, 142, 87–95.
Xu, Z., Chang, X., Xu, F., & Zhang, H. (2012). \({ \ell _ {1/2}}\) regularization: a thresholding representation theory and a fast solver. IEEE Transactions on Neural Networks and Learning Systems, 23(7), 1013–1027.
Acknowledgements
This research was supported by National Natural Science Foundation of China under Grant 61531015 and 62101176, the National Key Research and Development Program of China under Grant 2016XFC1400203, The Science, Technology and Innovation Commission of Shenzhen Municipality under Grant JCYJ20180306170932431, the Research Project of Guizhou University for Talent Introduction (no. [2020]61), and the Cultivation Project of Guizhou University (no. [2019]56).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, W., Tan, W., Shi, W. et al. Direction finding based on iterative adaptive approach utilizing weighted \(\ell _2\)-norm penalty for acoustic vector sensor array. Multidim Syst Sign Process 33, 247–261 (2022). https://doi.org/10.1007/s11045-021-00797-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-021-00797-6