Parallel hardware implementation of data hiding scheme for quality access control of grayscale image based on FPGA | Multidimensional Systems and Signal Processing Skip to main content
Log in

Parallel hardware implementation of data hiding scheme for quality access control of grayscale image based on FPGA

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Dither modulation is a well-known data hiding technique for the quality access control of the digital image. Sometimes, quality access control demands real-time hardware implementation to achieve low-power consumption, high-speed, and real time processing with greater reliability and at the same time, the scheme can be fitted with the existing consumer electronic devices. With this motivation, we proposed an efficient hardware architecture to implement a discrete cosine transform domain based quality access control scheme. The proposed very-large-scale-integration architecture is optimized by parallel processing and is implemented in a field programmable gate array. The architecture is tested over a large number of benchmark images. The scheme offers a 90% improvement in power consumption than the related implementations found in the literature. The scheme also achieves a very high throughput of 1.34 GB/s and 1.34 GB/s for the quality access control of encoder and decoder, respectively at a maximum operating frequency of 131.16 MHz, for the processing of (512 × 512) images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Belhadj, H., Aggrawal, V., Pradhan, A. & Zerrouki, A. (2009). Power-aware FPGA design. Actel Corporation White Paper, 75.

  • Chen, W. H., Smith, C., & Fralick, S. (1977). A fast computational algorithm for the discrete cosine transform. IEEE Transactions on Communications,25(9), 1004–1009.

    Article  Google Scholar 

  • Darji, A. D., Lad, T., Merchant, S. N., & Chandorkar, A. N. (2013). Watermarking hardware based on wavelet coefficients quantization method. Circuits, Systems, and Signal Processing,32(6), 2559–2579.

    Article  MathSciNet  Google Scholar 

  • Das, S., Maity, R., & Maity, N. P. (2018). VLSI-based pipeline architecture for reversible image watermarking by difference expansion with high-level synthesis approach. Circuits, Systems, and Signal Processing,37(4), 1575–1593.

    Article  MathSciNet  Google Scholar 

  • Desai, L. R., & Mali, S. N. (2018). VLSI-based data hiding with transform domain module using FPGA. In Proceedings of intelligent computing and information and communication (pp. 425–434).

  • Etemad, E., Samavi, S., Soroushmehr, S. R., Karimi, N., Etemad, M., Shirani, S., et al. (2018). Robust image watermarking scheme using bit-plane of hadamard coefficients. Multimedia Tools and Applications,77(2), 2033–2055.

    Article  Google Scholar 

  • Garimella, A., Satyanarayana, M., Murugesh, P., & Niranjan, U. (2004). ASIC for digital color image watermarking. In Proceedings of the IEEE 11th digital signal processing workshop, and the 3rd IEEE signal processing education workshop (pp. 292–296).

  • Ghosh, S., Das, N., Das, S., Maity, S. P., & Rahaman, H. (2015). An adaptive feedback based reversible watermarking algorithm using difference expansion. In Proceedings of the IEEE 2nd international conference on recent trends in information systems (pp. 207–212).

  • Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2005). Digital image processing using MATLAB. Upper Saddle River, NJ: Pearson Education.

    Google Scholar 

  • Hajjaji, M. A., Gafsi, M., Ben Abdelali, A., & Mtibaa, A. (2019). FPGA implementation of digital images watermarking system based on discrete haar wavelet transform. Security and Communication Networks, 2019, 1294267. https://doi.org/10.1155/2019/1294267

    Article  Google Scholar 

  • Horng, S. J., Rosiyadi, D., Fan, P., Wang, X., & Khan, M. K. (2014). An adaptive watermarking scheme for e-government document images. Multimedia Tools and Applications,72(3), 3085–3103.

    Article  Google Scholar 

  • Image Database. (2017a). http://www.io.csic.es/PagsPers/JPortilla/image-processing/bls-gsm/63-test-images. Accessed 1 Mar 2017.

  • Image Database. (2017b). http://sipi.usc.edu/database/database.php. Accessed 1 Mar 2017.

  • Imaizumi, S., Watanabe, O., Fujiyoshi, M., & Kiya, H. (2005). Generalized hierarchical encryption of JPEG 2000 code streams for access control. In Proceedings of the IEEE international conference on image processing (p. II-1094).

  • Jiang, Y., Zhang, Y., Pei, W., & Wang, K. (2013). Adaptive spread transform QIM watermarking algorithm based on improved perceptual models. AEU-International Journal of Electronics and Communications,67(8), 690–696.

    Article  Google Scholar 

  • Karmani, S., Djemal, R., & Tourki, R. (2009). Efficient hardware architecture of 2D-scan-based wavelet watermarking for image and video. Computer Standards & Interfaces,31(4), 801–811.

    Article  Google Scholar 

  • Karthigaikumar, P., & Baskaran, K. (2011). FPGA and ASIC implementation of robust invisible binary image watermarking algorithm using connectivity preserving criteria. Microelectronics Journal,42(1), 82–88.

    Article  Google Scholar 

  • Khan, A., & Malik, S. A. (2014). A high capacity reversible watermarking approach for authenticating images: exploiting down-sampling, histogram processing, and block selection. Information Sciences,256, 162–183.

    Article  Google Scholar 

  • Kitsos, P., Voros, N. S., Dagiuklas, T., & Skodras, A. N. (2013). A high speed FPGA implementation of the 2D DCT for ultra high definition video coding. In Proceedings of the 18th IEEE international conference on digital signal processing (pp. 1–5).

  • Kountchev, R., Milanova, M., & Kountcheva, R. (2015). Content protection and hierarchical access control in image databases. In Proceedings of the international symposium on innovations in intelligent systems and applications (pp. 1–6).

  • Kumar, C., Singh, A. K., & Kumar, P. (2018). A recent survey on image watermarking techniques and its application in e-governance. Multimedia Tools and Applications,77(3), 3597–3622.

    Article  Google Scholar 

  • Kuo, W. C., Wang, C. C., & Hou, H. C. (2016). Signed digit data hiding scheme. Information Processing Letters,116(2), 183–191.

    Article  MathSciNet  Google Scholar 

  • Maity, H. K., & Maity, S. P. (2014). FPGA implementation of reversible watermarking in digital images using reversible contrast mapping. Journal of Systems and Software,96, 93–104.

    Article  Google Scholar 

  • Maity, H. K., & Maity, S. P. (2017). FPGA implementation for modified RCM-RW on digital images. Journal of Circuits, Systems and Computers,26(3), 1750044.

    Article  Google Scholar 

  • Maity, S. P., & Kundu, M. K. (2013). Distortion free image-in-image communication with implementation in FPGA. AEU-International Journal of Electronics and Communications,67(5), 438–447.

    Article  Google Scholar 

  • Mandal, H., Phadikar, A., Maity, G. K., & Chiu, T. L. (2017). FPGA based low power hardware implementation for quality access control of digital image using dither modulation. In Proceedings of the devices for integrated circuit (DevIC) (pp. 642–646).

  • Metkar, S. P., & Lichade, M. V. (2013). Digital image security improvement by integrating watermarking and encryption technique. In Proceedings of the IEEE international conference on signal processing, computing and control (pp. 1–6).

  • Mohanty, S. P., Kougianos, E., & Ranganathan, N. (2007). VLSI architecture and chip for combined invisible robust and fragile watermarking. IET Computers and Digital Techniques,1(5), 600–611.

    Article  Google Scholar 

  • Phadikar, A., Maity, S. P., & Delpha, C. (2012). Image error concealment and quality access control based on data hiding and cryptography. Telecommunication Systems,49(2), 239–254.

    Article  Google Scholar 

  • Phadikar, A., Maity, S. P., & Mandal, M. (2008). Quantization based data hiding scheme for quality access control of images. In Proceedings of the 12th IASTED international conference on internet and multimedia systems and applications (IMSA 2008) (pp. 113–118).

  • Sridhar, B., & Arun, C. (2016). An enhanced approach in video watermarking with multiple watermarks using wavelet. Journal of Communications Technology & Electronics,61(2), 165–175.

    Article  Google Scholar 

  • Sumathi, P., & Janakiraman, P. A. (2010). FPGA implementation of an amplitude-modulated continuous-wave ultrasonic ranger using restructured phase-locking scheme. VLSI Design,2010, 9.

    Article  Google Scholar 

  • Voloshynovskiy, S. & Pun, T. (2002). Capacity security analysis of data hiding technologies. In Proceedings of the IEEE international conference on multimedia and expo (pp. 477–480).

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing,13(4), 600–612.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science and Technology (MOST), Taiwan R.O.C., under Grant Number MOST 107-3113-E-155-001-CC2, 106-3113-E-155-001-CC2, 106-2221-E-155-036, 105-3113-E-155-001, 104-3113-E-155-001, 103-3113-E-155-001, 103-2221-E-155-028-MY3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Himadri Mandal or Tien-Lung Chiu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phadikar, A., Mandal, H. & Chiu, TL. Parallel hardware implementation of data hiding scheme for quality access control of grayscale image based on FPGA. Multidim Syst Sign Process 31, 73–101 (2020). https://doi.org/10.1007/s11045-019-00650-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-019-00650-x

Keywords

Navigation