Local difference ternary sequences descriptor based on unsupervised min redundancy mutual information feature selection | Multidimensional Systems and Signal Processing Skip to main content
Log in

Local difference ternary sequences descriptor based on unsupervised min redundancy mutual information feature selection

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Texture feature description research have received significant attention in recent years. It is widely known that the local texture feature descriptor can achieve good performance under various image conditions, such as geometric size variation, different poses, complex illumination and partial occlusion. Although Local Difference Binary is an acknowledged excellent feature descriptor, it only computes the intensity and gradient difference on pairwise grid cells and ignores the image grid texture intensity and gradient. This paper proposes a novel local texture descriptor, named as Local Difference Ternary (LDT), which can not only represent difference and texture information of the grid cells intensity and gradient simultaneously, but also capture richer detailed texture information. In addition, the Unsupervised Min Redundancy Mutual Information (UMRMI) for feature selection is proposed to select the optimal subset of LDT features for achieving more powerfully discriminative ability. For the purpose of further improving the efficiency and effectiveness of UMRMI, we extend UMRMI to k-means space, namely k-UMRMI. Furthermore, a multi-degree scheme is adopted to achieve richer texture description. Finally, Radial Function Neural Network is employed for classification, which is an excellent classifier, especially for larger samples. Several experimental results on certain benchmark face databases demonstrate that our proposed method is remarkably superior to some other state-of-the-art approaches under various image conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abdullah, M. F. A., Sayeed, M. S., Muthu, K. S., et al. (2014). Face recognition with symmetric local graph structure (SLGS). Expert Systems with Applications,41(14), 6131–6137.

    Article  Google Scholar 

  • Alush, A., Friedman, A., & Goldberger, J. (2015). Pairwise clustering based on the mutual-information criterion. Neurocomputing,182(C), 284–293.

    Google Scholar 

  • Bennasar, M., Hicks, Y., & Setchi, R. (2015). Feature selection using joint mutual information maximisation. Expert Systems with Applications,42(22), 8520–8532.

    Article  Google Scholar 

  • Cament, L. A., Castillo, L. E., Perez, J. P., Galdames, F. J., & Perez, C. A. (2014). Fusion of local normalization and Gabor entropy weighted features for face identification. Pattern Recognition,47(2), 568–577.

    Article  Google Scholar 

  • Hong, X., et al. (2014). Combining LBP difference and feature correlation for texture description. IEEE Transactions on Image Processing,23(6), 2557–2568.

    Article  MathSciNet  MATH  Google Scholar 

  • Hsieh, P.-C., & Tung, P.-C. (2009). A novel hybrid approach based on sub-pattern technique and whitened PCA for face recognition. Pattern Recognition,42(1), 978–984.

    Article  MATH  Google Scholar 

  • Huang, G., Mattar, M., Lee, H., et al. (2012). Learning to align from scratch. In: Advances in neural information processing systems (pp. 764–772).

  • Huang, M., Mu, Z., Zeng, H., & Huang, S. (2015). Local image region description using orthogonal symmetric local ternary pattern. Pattern Recognition Letters,54, 56–62.

    Article  Google Scholar 

  • Junling, X., Yuming, Z., Lin, C., & Baowe, X. (2012a). An unsupervised feature selection approach based on mutual information. Journal of Computer Research and Development,49(2), 372–382.

    Google Scholar 

  • Junling, X., Yuming, Z., Lin, C., et al. (2012b). An unsupervised feature selection approach based on mutual information. Journal of Computer Research and Development,49(2), 372–382.

    Google Scholar 

  • Kanan, H. R., & Faez, K. (2010). Recognizing faces using adaptively weighted sub-gabor array from a single sample image per enrolled subject. Image and Vision Computing,28(3), 438–448.

    Article  Google Scholar 

  • Lampariello, F., & Sciandrone, M. (2001). Efficient training of RBF neural networks for pattern recognition. IEEE Transactions on Neural Networks,12(5), 1235.

    Article  Google Scholar 

  • Legg, P. A., Rosin, P. L., Marshall, D., et al. (2015). Feature neighbourhood mutual information for multi-modal image registration: An application to eye fundus imaging. Pattern Recognition,48(6), 1937–1946.

    Article  Google Scholar 

  • Lin, Y., Hu, Q., Liu, J., et al. (2016). Multi-label feature selection based on neighborhood mutual information. Applied Soft Computing,38, 244–256.

    Article  Google Scholar 

  • Malkomes, G., Pordeus, J. P., & Fisch Brito, C. (2014). An improvement of the K-SVD algorithm with applications on face recognition. In: 2014 Brazilian conference on intelligent systems (BRACIS) (pp. 241–246).

  • Mei, S., Bi, Q., Ji, J., Hou, J., & Du, Q. (2017a). Hyperspectral image classification by exploring low-rank property in spectral or/and spatial domain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,10(6), 2910–2921.

    Article  Google Scholar 

  • Mei, S., Ji, J., Hou, J., Li, X., & Du, Q. (2017b). Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks. IEEE Transactions on Geoscience & Remote Sensing,55(8), 4520–4533.

    Article  Google Scholar 

  • Meng, J., & Zhang, W. (2007). Volume measure in 2DPCA-based face recognition. Pattern Recognition Letters,28(10), 1203–1208.

    Article  Google Scholar 

  • Murala, S., & Wu, Q. M. J. (2013). Local ternary co-occurrence patterns: A new feature descriptor for MRI and CT image retrieval. Neurocomputing,119, 399–412.

    Article  Google Scholar 

  • Murala, S., & Wu, Q. J. (2014). Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE Journal of Biomedical and Health Informatics,18(3), 929–937.

    Article  Google Scholar 

  • Murala, S., & Wu, Q. M. J. (2015). Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval. Neurocomputing,149, 1502–1514.

    Article  Google Scholar 

  • Oh, J. H., & Kwak, N. (2013). Generalization of linear discriminant analysis using Lp-norm. Pattern Recognition Letters,34(6), 679–685.

    Article  Google Scholar 

  • Ojala, T., Pietikainen, M., Maenpaa, T. (2001). A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification. Lecture Notes in Computer Science (pp. 397–406). Heidelberg: Springer.

    Google Scholar 

  • Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multi resolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,24(7), 971–987.

    Article  MATH  Google Scholar 

  • Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information: criteria of max-dependency, max-relevance, and rain redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence,27(8), 1226–1238.

    Article  Google Scholar 

  • Ren, J., Jiang, X., Yuan, J., & Wang, G. (2014). Optimizing LBP structure for visual recognition using binary quadratic programming. IEEE Signal Processing Letters,21(11), 1346–1350.

    Article  Google Scholar 

  • Satpathy, A., Jiang, X., & Eng, H. (2014). LBP based edge-texture features for object recognition. IEEE Transactions on Image Processing,23(5), 1953–1964.

    Article  MathSciNet  MATH  Google Scholar 

  • Selvan, S., Borckmans, P., Chattopadhyay, A., & Absil, P. (2013). Spherical mesh adaptive direct search for separating quasi-uncorrelated sources by range-based independent component analysis. Neural Computation,25(9), 2486–2522.

    Article  MathSciNet  MATH  Google Scholar 

  • Shin, K., Feraday, S. A., Harris, C. J., & Brennan, M. J. (2003). Optimal auto-regressive modelling of a measured noisy deterministic signal using singular-value decomposition. Mechanical Systems and Signal Processing,17(2), 423–432.

    Article  Google Scholar 

  • Shu, X., Gao, Y., & Lu, H. (2012). Efficient linear discriminant analysis with locality preserving for face recognition. Pattern Recognition,45(5), 1892–1898.

    Article  MATH  Google Scholar 

  • Sun, Z., & Lam, K.-M. (2011). Depth estimation of face images based on the constrained ICA model. IEEE Transactions on Information Forensics and Security,6(2), 360–370.

    Article  Google Scholar 

  • Tan, K., & Chen, S. (2005). Adaptively weighted sub-pattern PCA for face recognition. Neurocomputing,64(1), 505–511.

    Article  MathSciNet  Google Scholar 

  • Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing,19(6), 1635–1650.

    Article  MathSciNet  MATH  Google Scholar 

  • Tapia, J., & Perez, C. (2013). Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of LBP, intensity, and shape. IEEE Transactions on Information Forensics Security,8(3), 488–499.

    Article  Google Scholar 

  • Walton, J., & Fairley, N. (2005). Noise reduction in X-ray photoelectron spectromicroscopy by a singular value decomposition sorting procedure. Journal of Electron Spectroscopy and Related Phenomena,148(1), 29–40.

    Article  Google Scholar 

  • Wu, M., Zhou, J., & Sun, J. (2012). Multi-scale ICA texture pattern for gender recognition. Electronics Letters,48(11), 629–631.

    Article  Google Scholar 

  • Yang, X., & Cheng, K. T. (2012). LDB: An ultra-fast feature for scalable augmented reality on mobile devices. In Proceedings of international symposium on mixed and augmented reality (ISMAR).

  • Yang, X., & Cheng, K.-T. (2014). Local difference binary for ultrafastand distinctive feature description. IEEE Transactions on Pattern Analysis and Machine Intelligence,36(1), 188–194.

    Article  Google Scholar 

  • Yang, J., & Liu, C. (2007). Horizontal and vertical 2DPCA-based discriminant analysis for face verification on a large-scale database. IEEE Transactions on Information Forensics and Security,2(4), 781–792.

    Article  Google Scholar 

  • Yang, W., Sun, C., & Zhang, L. (2011). A multi-manifold discriminant analysis method for image feature extraction. Pattern Recognition,44(8), 1649–1657.

    Article  MATH  Google Scholar 

  • Yang, J., et al. (2014). Heterogeneous vision chip and LBP-based algorithm for high-speed tracking. Electronics Letters,50(6), 438–439.

    Article  Google Scholar 

  • Zhang, B., Gao, Y., Zhao, S., & Liu, J. (2010). Local derivative pattern versus local binary pattern: Face recognition with higher-order local pattern descriptor. IEEE Transactions on Image Processing,19(2), 533–544.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Y., Li, S., Wang, S., & Shi, Y. Q. (2014). Revealing the traces of median filtering using high-order local ternary patterns. IEEE Signal Processing Letters,21(3), 275–280.

    Article  Google Scholar 

  • Zhao, Y., Jia, W., Hu, R.-X., & Min, H. (2013). Completed robust local binary pattern for texture classification. Neurocomputing,106, 68–76.

    Article  Google Scholar 

  • Zuñiga, A. G., Florindo, J. B., & Bruno, O. M. (2014). Gabor wavelets combined with volumetric fractal dimension applied to texture analysis. Pattern Recognition Letters,36, 135–143.

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by Fundamental Research Funds for the Central Universities of Ministry of Education of China (310824172001, 310824171008), the National Natural Science Foundation of China (61302150, 61703054), Postdoctoral Science Foundation of China (2014M562356).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, G., Liu, Z., Cao, J. et al. Local difference ternary sequences descriptor based on unsupervised min redundancy mutual information feature selection. Multidim Syst Sign Process 31, 771–791 (2020). https://doi.org/10.1007/s11045-018-0595-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0595-z

Keywords

Navigation