Synchronization problem of 2-D coupled dynamical networks with communication delays and missing measurements | Multidimensional Systems and Signal Processing Skip to main content
Log in

Synchronization problem of 2-D coupled dynamical networks with communication delays and missing measurements

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This study addresses a synchronization problem for an array of discrete-time two-dimensional (2-D) coupled dynamical networks with time-varying communication delays and missing measurements, which is oriented from the well-known Roesser model. For such a 2-D complex network model, both network dynamics and couplings evolve in two independent directions. The missing measurements are described by a binary switching sequence satisfying a conditional probability distribution. The purpose of this study is to establish sufficient easy-to-verify conditions ensuring the global mean-square synchronization through constructing an energy-like Lyapunov–Krasovskii function, making use of the Kronecker product and applying some stochastic analysis techniques. Finally, two simulation examples are presented to illustrate the effectiveness of the proposed synchronization scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alzoubi, K., Li, X. Y., Wang, Y., Wan, P. J., & Frieder, O. (2003). Geometric spanners for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 14(4), 408–421.

    Article  Google Scholar 

  • Bax, A., & Freeman, R. (1981). Investigation of complex networks of spin-spin coupling by two-dimensional NMR. Journal of Magnetic Resonance, 44(3), 542–561.

    Google Scholar 

  • Biggs, N. (1974). Algebraic graph theory, Cambridge tracks in mathematics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bose, N. K. (2003). Multidimensional systems theory and applications. New York: Kluwer.

    Google Scholar 

  • Boyd, S. P., Ghaoui, L. E., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadephia: SIAM.

    Book  MATH  Google Scholar 

  • Dai, J., Guo, Z., & Wang, S. (2013). Robust \({H_\infty }\) control for a class of 2-D nonlinear discrete stochastic systems. Circuits systems and Signal Processing, 32(5), 2297–2316.

    Article  MathSciNet  Google Scholar 

  • Ding, D., Wang, Z., Alsaadi, F. E., & Shen, Bo. (2015). Receding horizon filtering for a class of discrete time-varying nonlinear systems with multiple missing measurements. International Journal of General Systems, 44(2), 198–211.

    Article  MathSciNet  MATH  Google Scholar 

  • Du, C., Xie, L., & Zhang, C. (2001). \({H_\infty }\) control and robust stabilization of two-dimensional systems in Roesser models. Automatica, 37(2), 205–211.

    Article  MathSciNet  MATH  Google Scholar 

  • Duan, Z., Xiang, Z., & Karimi, H. R. (2014a). Stability and \(l_1\)-gain analysis for positive 2D T-S fuzzy state-delayed systems in the second FM model. Neurocomputing, 2014(142), 209–215.

  • Duan, Z., Xiang, Z., & Karimi, H. R. (2014b). Robust stabilization of 2D state-delayed stochastic systems with randomly occurring uncertainties and nonlinearities. International Journal of Systems Science, 45(7), 1402–1415.

    Article  MathSciNet  MATH  Google Scholar 

  • Egerstedt, M. (2011). Complex networks: Degrees of control. Nature, 473(7346), 158–159.

    Article  Google Scholar 

  • Fei, Z., Wang, D., Gao, H., & Zhang, Y. (2009). Discrete-time complex networks: A new synchronisation stability criterion. International Journal of Systems Science, 40(9), 931–936.

    Article  MathSciNet  MATH  Google Scholar 

  • Godsil, C., & Royle, G. (2001). Algebraic graph theory, volume 207 of graduate texts in mathematics. Berlin: Springer.

    MATH  Google Scholar 

  • Horn, R. A., & Johnson, C. R. (1987). Matrix analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jiang, X., Han, Q. L., & Yu, X. (2005). Stability criteria for linear discrete-time systems with interval-like time-varying delay. American Control Conference, 4, 2817–2822.

    Google Scholar 

  • Kaczorek, T. (1985). Two-dimensional linear systems. Berlin: Springer.

    MATH  Google Scholar 

  • Levnajic, Z., & Tadic, B. (2010). Stability and chaos in coupled 2-D maps on gene regulatory network of bacterium E-coli. Chaos, 20(3), 033115.

    Article  Google Scholar 

  • Li, P., & Lam, J. (2011). Synchronization in networks of genetic oscillators with delayed coupling. Asian Journal of Control, 13(5), 713–725.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, X., Wang, W., & Li, L. (2015). \({H_\infty }\) control for 2-D T-S fuzzy FMII model with stochastic perturbation. International Journal of Systems Science, 46(4), 1–16.

    MathSciNet  MATH  Google Scholar 

  • Liang, J., Wang, Z., & Liu, X. (2011). Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements. IEEE Transactions on Neural Networks, 22(3), 486–496.

    Article  Google Scholar 

  • Liang, J., Wang, Z., & Liu, X. (2013). Robust staibisation for a class of stochastic two-dimensional non-linear systems with time-varying delays. IET Control Theory and Applications, 7(13), 1699–1710.

    Article  MathSciNet  Google Scholar 

  • Liang, J., Wang, Z., Liu, X., & Louvieris, P. (2012). Robust synchronization for 2-D discrete-time coupled dynamical networks. IEEE Transactions on Neural Networks and Learning Systems, 23(6), 942–953.

    Article  Google Scholar 

  • Liang, J., Wang, Z., Liu, Y., & Liu, X. (2008). Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks. IEEE Transactions on Neural Networks, 19(11), 1910–1921.

    Article  Google Scholar 

  • Liu, Y., Alsaadi, F. E., Yin, X., & Wang, Y. (2015). Robust \({H_\infty }\) filtering for discrete nonlinear delayed stochastic systems with missing measurements and randomly occurring nonlinearities. International Journal of General Systems, 44(2), 169–181.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Y., Slotine, J., & Barabasi, A. (2011). Controllability of complex networks. Nature, 473(7346), 167–173.

    Article  Google Scholar 

  • Liu, X., & Zou, Y. (2010). A consensus problem for a class of vehicles with 2-D dynamics. Multidimensional Systems and Signal Processing, 21(4), 373–389.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, X., & Zou, Y. (2014). Stability analysis for a class of complex dynamical networks with 2-D dynamics. Multidimensional Systems and Signal Processing, 25(3), 531–540.

    Article  MATH  Google Scholar 

  • Luo, Y., Wang, Z., Liang, J., Wei, G., & Alsaadi, F. E. (2017). \( H_\infty \) control for 2-D fuzzy systems with interval time-varying delays and missing measurements. IEEE Transactions on Cybernetics, 47(2), 365–377.

    Google Scholar 

  • Luo, Y., Wei, G., Liu, Y., & Ding, X. (2015). Reliable \( H_\infty \) state estimation for 2-D discrete systems with infinite distributed delays and incomplete observations. International Journal of General Systems, 44(2), 155–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Lv, J. H., & Chen, G. (2005). A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Transactions on Automatic Control, 50(6), 841–846.

    Article  MathSciNet  MATH  Google Scholar 

  • Marszalek, W. (1984). Two-dimensional state-space discrete models for hyperbolic partial differential equations. Applied Mathematical Modelling, 8(1), 11–14.

    Article  MathSciNet  MATH  Google Scholar 

  • Savkin, A. V., & Petersen, I. R. (1997). Robust filtering with missing data and a deterministic description of noise and uncertainty. International Journal of Systems Science, 28(4), 373–378.

    Article  MATH  Google Scholar 

  • Savkin, A. V., Petersen, I. R., & Moheimani, S. O. R. (1999). Model validation and state estimation for uncertain continuous-time systems with missing discrete-continuous data. Computers and Electrical Engineering, 25(1), 29–43.

    Article  Google Scholar 

  • Shen, B., Wang, Z., & Liu, X. (2011). Bounded, synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon. IEEE Transactions on Neural Networks, 22, 145–157.

    Article  Google Scholar 

  • Steur, E., Michiels, W., Huijberts, H., & Nijmeijer, H. (2014). Networks of diffusively time-delay coupled systems: Conditions for synchronization and its relation to the network topology. Physica D Nonlinear Phenomena, 277(6), 22–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, X., & Chen, G. (2002). Synchronization in small-world dynamical networks. International Journal of Bifurcation and Chaos, 12(1), 187–192.

    Article  Google Scholar 

  • Wang, Y., Wang, Z., & Liang, J. (2009). Global synchronization for delayed complex networks with randomly occurring nonlinearities and multiple stochastic disturbances. Journal of Physics A Mathematical and Theoretical, 42(13), 1243–1247.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Y., Wang, Z., Liang, J., Li, Y., & Du, M. (2010). Synchronization of stochastic genetic oscillator networks with time delays and Markovian jumping parameters. Neurocomputing, 73(13–15), 2532–2539.

    Article  Google Scholar 

  • Wu, Z. G., & Park, J. H. (2013). Synchronization of discrete-time neural networks with time delays subject to missing data. Neurocomputing, 122, 418–424.

    Article  Google Scholar 

  • Xiong, W., Hayat, T., & Cao, J. (2014). Interval stability of time-varying two-dimensional hierarchical discrete-time multi-agent systems. IET Control Theory and Applications, 9(1), 114–119.

    Article  MathSciNet  Google Scholar 

  • Yang, F., Wang, Z., Ho, D., & Gani, M. (2007). Robust \({H_\infty }\) control with missing measurements and time delays. IEEE Transactions on Automatic Control, 52(9), 1666–1672.

    Article  MathSciNet  MATH  Google Scholar 

  • Yin, C., Dadras, S., Huang, X., Mei, J., Malek, H., & Cheng, Y. (2017a). Energy-saving control strategy for lighting system based on multivariate extremum seeking with newton algorithm. Energy Conversion and Management, 142, 504–522.

    Article  Google Scholar 

  • Yin, C., Huang, X., Chen, Y., Dadras, S., Zhong, S. M., & Cheng, Y. (2017b). Fractional-order exponential switching technique to enhance sliding mode control. Applied Mathematical Modelling, 44, 705–726.

    Article  MathSciNet  MATH  Google Scholar 

  • Zarrop, M. B., & Wellstead, P. E. (2002). 2-D and EM techniques for cross directional estimation and control. IEE Proceedings Control Theory and Applications, 149(5), 457–462.

    Article  Google Scholar 

  • Zhang, H., Zhao, M., Wang, Z., & Wu, Z. (2014). Adaptive synchronization of an uncertain coupling complex network with time-delay. Nonlinear Dynamics, 77(3), 643–653.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, J., Wang, Z., Ding, D., & Liu, X. (2015). \( H_\infty \) state estimation for discrete-time delayed neural networks with randomly occurring quantizations and missing measurements. Neurocomputing, 148, 388–396.

    Article  Google Scholar 

  • Zheleznyak, A., & Chua, L. O. (1994). Coexistence of low- and high dimensional spatio-temporal chaos in a chain of dissipatively coupled Chuas circuits. International Journal of Bifurcation and Chaos, 4(3), 639–674.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant No. 61703137, and the Fundamental Research Funds for the Central Universities under Grant No. 2017B01814.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxia Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Z., Shen, J. Synchronization problem of 2-D coupled dynamical networks with communication delays and missing measurements. Multidim Syst Sign Process 30, 39–67 (2019). https://doi.org/10.1007/s11045-017-0545-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0545-1

Keywords

Navigation