Embedded non-parametric kernel learning for kernel clustering | Multidimensional Systems and Signal Processing Skip to main content
Log in

Embedded non-parametric kernel learning for kernel clustering

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Non-parametric kernel learning (NPKL) methods have been attracted much more attention and achieved outstanding classification performance in the past few years. Their models generally utilize pairwise constraints and are built based on the manifold assumption. But, such an assumption might be invalid for some high-dimensional and sparse data due to the curse of dimensionality, which has a negative influence on the kernel learning performance. In this paper, we try to address this problem using joint dimensionality reduction and kernel learning. Different from traditional approaches which conduct dimensionality reduction and learning tasks in sequence, we propose a novel framework which can seamlessly combine semi-supervised NPKL with dimensionality reduction. Several semi-supervised NPKL algorithms can be derived from this framework, which not only effectively utilize pairwise constraints, but can address the issue of the manifold assumption invalidation. In addition, we apply the proposed method to improve the performance of kernel clustering. Experimental results demonstrate that the proposed method outperforms state-of-the-art semi-supervised NPKL methods and can significantly enhance the performance of kernel clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://archive.ics.uci.edu/ml/.

References

  • Ashish, S., Patel, V. M., & Rama, C. (2014). Multiple kernel learning for sparse representation-based classification. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 23(7), 3013–3024.

    Article  MathSciNet  Google Scholar 

  • Baghshah, M. S., & Shouraki, S. B. (2010). Kernel-based metric learning for semi-supervised clustering. Neurocomputing, 73(s 7—-9), 1352–1361.

    Article  MATH  Google Scholar 

  • Baghshah, M. S., & Shouraki, S. B. (2011). Learning low-rank kernel matrices for constrained clustering. Neurocomputing, 74(12–13), 2201–2211.

    Article  Google Scholar 

  • Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7(1), 2399–2434.

    MathSciNet  MATH  Google Scholar 

  • Bucak, S. S., & Jain, A. K. (2014). Multiple kernel learning for visual object recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(2), 1–1.

    Article  Google Scholar 

  • Burer, S., & Monteiro, R. D. C. (2003). A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Mathematical Programming, 95(2), 329–357.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, W., & Feng, G. (2012). Spectral clustering: A semi-supervised approach. Neurocomputing, 77(1), 229–242.

    Article  Google Scholar 

  • Chen, C., Zhang, J., He, X., & Zhou, Z. H. (2012). Non-parametric kernel learning with robust pairwise constraints. International Journal of Machine Learning and Cybernetics, 3(2), 83–96.

    Article  Google Scholar 

  • Feiping, N., Zinan, Z., Tsang, I. W., Dong, X., & Changshui, Z. (2011). Spectral embedded clustering: A framework for in-sample and out-of-sample spectral clustering. IEEE Transactions on Neural Networks, 22(11), 1796–1808.

    Article  Google Scholar 

  • Hoi, S. C. H., Jin, R., & Lyu, M. R. (2007). Learning nonparametric kernel matrices from pairwise constraints. In Proceedings of the 24th International Conference on Machine Learning, (ICML 2007) (pp.361–368).

  • Hu, E. L., & Kwok, J. T. (2014). Scalable nonparametric low-rank kernel learning using block coordinate descent. IEEE Transactions on Neural Networks and Learning Systems, 26(9), 1927–1938.

    Article  MathSciNet  Google Scholar 

  • Kulis, B. (2009). Low-rank kernel learning with bregman matrix divergences. Journal of Machine Learning Research, 10(1), 341–376.

    MathSciNet  MATH  Google Scholar 

  • Lanckriet, G. R. G., Christianini, N., Bartlett, P. L., Ghaoui, L. E., & Jordan, M. I. (2004). Learning the kernel matrix with semi-definite programming. Journal of Machine Learning Research, 5, 27–72.

    MATH  Google Scholar 

  • Li, Z., & Liu, J. (2009). Constrained clustering by spectral kernel learning. In 12th IEEE International Conference on Computer Vision,(ICCV 2009) (pp.421–427). IEEE.

  • Li, Z., Liu, J., & Tang, X. (2008). Pairwise constraint propagation by semidefinite programming for semi-supervised classification. In International Conference on Machine Learning, (ICML 2008) (pp.576–583).

  • Liang, Z., Zhang, L., & Liu, J. (2015). A novel multiple kernel learning method based on the kullback–Leibler divergence. Neural Processing Letters, 42(1), 745–762.

    Article  Google Scholar 

  • Liu, M., Sun, W., & Liu, B. (2015). Multiple kernel dimensionality reduction via spectral regression and trace ratio maximization. Knowledge-Based Systems, 83(1), 159–169.

    Article  Google Scholar 

  • Liu, B., Xia, S. X., & Zhou, Y. (2013). Unsupervised non-parametric kernel learning algorithm. Knowledge-Based Systems, 44(1), 1–9.

    Article  Google Scholar 

  • Liwicki, S., Zafeiriou, S. P., & Pantic, M. (2015). Online kernel slow feature analysis for temporal video segmentation and tracking. IEEE Transactions on Image Processing, 24, 2955–2970.

    Article  MathSciNet  Google Scholar 

  • Meng, J., Jung, C., Shen, Y., Jiao, L., & Liu, J. (2015). Adaptive constraint propagation for semi-supervised kernel matrix learning. Neural Processing Letters, 41(1), 1–17.

    Article  Google Scholar 

  • Nazarpour, A., & Adibi, P. (2015). Two-stage multiple kernel learning for supervised dimensionality reduction. Pattern Recognition, 48(5), 1854–1862.

    Article  Google Scholar 

  • Orabona, F., Luo, J., & Caputo, B. (2012). Multi kernel learning with online-batch optimization. Journal of Machine Learning Research, 13(1), 227–253.

    MathSciNet  MATH  Google Scholar 

  • Peng, J., Zhou, Y., & Chen, C. L. P. (2015). Region-kernel-based support vector machines for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 53(4), 1–15.

    Article  Google Scholar 

  • Reitmaier, T., & Sick, B. (2015). The responsibility weighted mahalanobis kernel for semi-supervised training of support vector machines for classification. Information Sciences, 323, 179–198.

    Article  MathSciNet  Google Scholar 

  • Shrivastava, A., Pillai, J. K., & Patel, V. M. (2015). Multiple kernel-based dictionary learning for weakly supervised classification. Pattern Recognition, 48(8), 2667–2675.

    Article  Google Scholar 

  • Xiang, S., Nie, F., & Zhang, C. (2008). Learning a mahalanobis distance metric for data clustering and classification. Pattern Recognition, 41(12), 3600–3612.

    Article  MATH  Google Scholar 

  • Yen-Yu, L., Tyng-Luh, L., & Chiou-Shann, F. (2011). Multiple kernel learning for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6), 1147–1160.

    Article  Google Scholar 

  • Zhang, X., & Mahoor, M. H. (2015). Task-dependent multi-task multiple kernel learning for facial action unit detection. Pattern Recognition, 51, 187–196.

    Article  Google Scholar 

  • Zhang, K., Wang, Q., Lan, L., Sun, Y., & Marsic, I. (2014). Sparse semi-supervised learning on low-rank kernel. Neurocomputing, 129(4), 265–272.

    Article  Google Scholar 

  • Zhong, S., Chen, D., Xu, Q., & Chen, T. (2013). Optimizing the gaussian kernel function with the formulated kernel target alignment criterion for two-class pattern classification. Pattern Recognition, 46(7), 2045–2054.

    Article  MATH  Google Scholar 

  • Zhuang, J., Tsang, I. W., & Hoi, S. C. H. (2011). A family of simple non-parametric kernel learning algorithms. Journal of Machine Learning Research, 12(2), 1313–1347.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61403394) and the Fundamental Research Funds for the Central Universities (No. 2014QNA46).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Liu or Chen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Liu, B., Zhang, C. et al. Embedded non-parametric kernel learning for kernel clustering. Multidim Syst Sign Process 28, 1697–1715 (2017). https://doi.org/10.1007/s11045-016-0440-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0440-1

Keywords

Navigation