Enhancement of blood vessels in retinal imaging using the nonsubsampled contourlet transform | Multidimensional Systems and Signal Processing Skip to main content

Advertisement

Log in

Enhancement of blood vessels in retinal imaging using the nonsubsampled contourlet transform

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents an enhancement method for blood vessels in retinal images based on the nonsubsampled contourlet transform (NSCT). The NSCT is a shift-invariant version of the contourlet transform built upon the nonsubsampled pyramid filter banks and the nonsubsampled directional filter banks. The proposed method uses the NSCT to decompose the input retinal image into eight directions from coarser to finer scales, and then analyzes and classifies the image pixels into three categories: vessel, uncertainty, and non-vessel pixels, according to the NSCT coefficients. Then, we modify the NSCT coefficients according to the class of each pixel using a nonlinear mapping function, and reconstruct the enhanced image from the modified NSCT coefficients. The experimental results show that the proposed method can obviously increase the contrast of retinal vessels and thus outperform other enhancement methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Chen, J., & Tian, J. (2008). Retinal vessel enhancement based on directional field. In Proceedings of SPIE, 6914.

  • Cunha A. L., Zhou J. P., Do M. N. (2006) The nonsubsampled contourlet transform: Theory, design, and applications. IEEE Transactions on Image Processing 15(10): 3089–3101

    Article  Google Scholar 

  • Dippel S., Stahl M., Wiemker R., Blaffert T. (2002) Multiscale contrast enhancement for radiographies: Laplacian pyramid versus fast wavelet transform. IEEE Transactions on Medical Imaging 21(4): 343–353

    Article  Google Scholar 

  • Do M. N., Vetterli M. (2005) The contourlet transform: An efficient directional multiresolution image representation. IEEE Transactions on Image Processing 14(12): 2091–2106

    Article  MathSciNet  Google Scholar 

  • Farnell D. J. J., Hatfield F. N., Knox P. C., Reakes M., Parry D., Spencer S., Harding S. P. (2008) Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. Journal of the Franklin Institute 345(7): 748–765

    Article  MATH  Google Scholar 

  • Feng P., Pan Y., Wei B., Jin W., Mi D. (2007) Enhancing retinal image by the contourlet transform. Pattern Recognition Letters 28: 516–522

    Article  Google Scholar 

  • Foracchia M., Grisan E., Ruggeri A. (2005) Luminosity and contrast normalization in retinal images. Medical Image Analysis 9: 179–190

    Article  Google Scholar 

  • Intajag, S., Tipsuwanporn, V., & Chatthai, R. (2009). Retinal image enhancement in multi-mode histogram. In Proceeding of 2009 WRI world congress on computer science and information engineering, pp. 745–749.

  • Jafar, I., & Ying, H. (2007). Multilevel component-based histogram equalization for enhancing the quality of grayscale images. In Proceeding of IEEE international conference on electro/information technology, pp. 563–568

  • Jain A. K. (1989) Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Kanski J. J. (1989) Clinical Ophthalmology: A Systematic Approach. Butterworth-Heinemann, London, U.K.

    Google Scholar 

  • Kim Y. T. (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics 43(1): 1–8

    Article  Google Scholar 

  • Laine A., Fan J., Yang W. (1995) Wavelets for contrast enhancement of digital mammography. IEEE Transactions on Biomedical Engineering 14: 536–550

    Google Scholar 

  • Lee S. J., McCarty C. A., Taylor H. R., Keeffe J. E. (2001) Costs of mobile screening for diabetic retinopathy: A practical framework for rural populations. Australian Journal of Rural Health 8: 186–192

    Article  Google Scholar 

  • Liu, W., & Guo, S. (2007). Design and implementation of image enhancement based on pyramid architecture. In Proceeding of IEEE TENCON 2007, pp. 1–4.

  • Patton N., Aslam T. M., MacGillivary T., Deary I. J., Dhillon B., Eikelboom R. H., Yogesan K., Constable I. J. (2006) Retinal image analysis: Concepts, applications and potential. Progress in Retinal and Eye Research 25: 99–127

    Article  Google Scholar 

  • Pizer S. M., Amburn E. P., Austin J. D., Cromartie R., Geselowitz A., Greer T., Romeny B. H., Zimmerman J. B., Zuiderveld K. (1987) Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing 39(3): 355–368

    Article  Google Scholar 

  • Shensa M. J. (1992) The discrete wavelet transform: Wedding the à trous and Mallat algorithms. IEEE Transactions on Signal Processing 40(10): 2464–2482

    Article  MATH  Google Scholar 

  • Staal J. J., Abramoff M. D., Niemeijer M., Viergever M. A., van Ginneken B. (2004) Ridge based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23: 501–509

    Article  Google Scholar 

  • Stahl M., Aach T., Buzug T. M., Dippel S., Neitzel U. (1999) Noise-resistant weak-structure enhancement for digital radiography. Proceeding of SPIE Medical Imaging 3661: 1406–1417

    Google Scholar 

  • Taylor H. R., Keeffe J. E. (2001) World blindness: A 21st century perspective. The British Journal of Ophthalmology 85: 261–266

    Article  Google Scholar 

  • Van De Ville D., Blu T., Unser M. (2005) On the multidimensional extension of the quincunx subsampling matrix. IEEE Signal Processing Letters 12(2): 112–115

    Article  Google Scholar 

  • Vuylsteke P., Schoeters E. (1994) Multiscale image contrast amplification (MUSICATM). Proceeding of SPIE Image Processing 2167: 551–560

    Google Scholar 

  • Wang Y., Chen Q., Zhang B. M. (1999) Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Transactions on Consumer Electronics 45(1): 68–75

    Article  Google Scholar 

  • Zhang Q., Guo B. (2009) Multifocus image fusion using the nonsubsampled contourlet transform. Signal Processing 89: 1334–1346

    Article  MATH  Google Scholar 

  • Zong X., Laine A. F., Geiser E. A., Wilson D. C. (1996) De-noising and contrast enhancement via wavelet shrinkage and nonlinear adaptive gain. Proceeding of SPIE Wavelet Applications III 2762: 566–574

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Cheng Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CC., Shih, CY., Lee, SK. et al. Enhancement of blood vessels in retinal imaging using the nonsubsampled contourlet transform. Multidim Syst Sign Process 23, 423–436 (2012). https://doi.org/10.1007/s11045-011-0167-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-011-0167-y

Keywords

Navigation