Dental biometric systems: a comparative study of conventional descriptors and deep learning-based features | Multimedia Tools and Applications Skip to main content
Log in

Dental biometric systems: a comparative study of conventional descriptors and deep learning-based features

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Dental biometrics utilizes the evidence divulged by radiographic dental images for human identification. Dental biometrics is commonly used to recognize dead individuals by comparing their before death (ante-mortem) and after death (post-mortem) dental images with the attributes such as tooth contours, restorations, number and shape of the teeth, and relative positions. In recent years, conventional local image descriptors and deep learning based features have shown excellent performances in different applications due to their excellent flexibility and capacity. Regardless of dental biometrics’ potential, the efficacy of human identification using dental radiographic images with advanced machine learning methods has not been adequately analyzed so far. In this paper, we investigate various facets of conventional hand-crafted microtextural (12 different descriptors) and deep learning-based features (8 different architectures) for dental biometrics. The dental features of single tooth images (segmented with Mask RCNN) are extracted and the features are matched with various distance functions and fusion techniques. Also, pretraining and fine-tuning transfer learning methods are employed while evaluating deep learning based methods. The empirical analysis, performed on a dataset of 100 dental images and fully reproducible, demonstrates the potential of local microtextural and deep learning tools for dental biometrics. The experiments showed that deep learning based methods with majority voting outperform other methods where Inception architecture has higher identification accuracy. All of the deep learning based methods have at least than 96% Rank-1 accuracy with majority voting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdel-Mottaleb M, Nomir O, Nassar DE, Fahmy G, Ammar HH (2003) Challenges of developing an automated dental identification system. In: IEEE 46th Midwest symposium on circuits and systems, vol 1, pp 411–414

  2. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  Google Scholar 

  3. Ahonen T, Rahtu E, Ojansivu V, Heikkila J (2008) Recognition of blurred faces using local phase quantization. In: ICPR, pp 1–4

  4. Ajaz A, Kathirvelu D (2013) Dental biometrics: Computer aided human identification system using the dental panoramic radiographs. In: IEEE international conference on communications and signal processing, pp 717–721

  5. Atheeswaran A, Karunya R, Amir A (2014) Human identification using dental biometrics. Int J Appl Eng Res 9:4428–4433

    Google Scholar 

  6. Älberg J-V, Goodwin M (2016) Automated dental identification with lowest cost path-based teeth and jaw separation. Scand J Forensic Sci 22(2):44–56

    Article  Google Scholar 

  7. BS, RN (2020) Transfer learning based automatic human identification using dental traits- an aid to forensic odontology. J Forensic Legal Med 76:102066

    Article  Google Scholar 

  8. Banday M, Mir AH (2019) Dental biometric identification system using ar model. In: TENCON, pp 2363–2369

  9. Barboza E, Marana A, Tostes Oliveira D (2012) Semiautomatic dental recognition using a graph-based segmentation algorithm and teeth shapes features, pp 348–353

  10. Bosch A, Zisserman A, Munoz X (2007) Representing shape with a spatial pyramid kernel. In: aCM international conference on Image and video retrieval, pp 401–408

  11. Chan C-H, Kittler J, Messer K (2007) Multi-scale local binary pattern histograms for face recognition. In: Lee S-W, Li S Z (eds) Advances in Biometrics. Springer, pp 809–818

  12. Chollet F (2016) Xception: Deep learning with depthwise separable convolutions. CoRR arXiv:1610.023571610.02357

  13. Cui Z, Li C, Wang W (2019) Toothnet: Automatic tooth instance segmentation and identification from cone beam ct images. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 6361–6370

  14. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: CVPR, vol 1, IEEE, pp 886–893

  15. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR09

  16. Dentistry – designation system for teeth and areas of the oral cavity. Standard, Universal Images Group Medical Images (2016)

  17. Dubey SR (2019) Face retrieval using frequency decoded local descriptor. Multimed Tools Appl 78(12):16411–16431

    Article  Google Scholar 

  18. Fahmy G, Nassar D, Haj-Said E, Chen H, Nomir O, Zhou J, Howell R, Ammar HH, Abdel-Mottaleb M, Jain AK (2005) Towards an automated dental identification system. J Electron Imaging 14(4):43018–43018

    Article  Google Scholar 

  19. Fan F, Ke W, Wu W, Tian X, Lyu T, Liu Y, Liao P, Dai X, Chen H, Deng Z (2020) Automatic human identification from panoramic dental radiographs using the convolutional neural network. Forensic Sci Int 314:110416

    Article  Google Scholar 

  20. Fan Y, Beare R, Matthews H, Schneider P, Kilpatrick N, Clement J, Claes P, Penington A, Adamson C (2018) Marker-based watershed transform method for fully automatic mandibular segmentation from cbct images. Dentomaxillofacial Radiol 48:20180261. https://doi.org/10.1259/dmfr.20180261

    Article  Google Scholar 

  21. Frejlichowski D, Czapiewski P (2013) An application of the curvature scale space shape descriptor for forensic human identification based on orthopantomograms, vol 8104, pp 67–76

  22. Frejlichowski D, Wanat R (2011) Extraction of teeth shapes from orthopantomograms for forensic human identification. In: Computer analysis of images and patterns, lecture notes in computer science, vol 6855. Springer, Berlin, pp 65–72

  23. Gurses A, Oktay AB (2020) Human identification with panoramic dental images using mask r-cnn and surf. In: 2020 5th international conference on computer science and engineering (UBMK), pp 232–237

  24. HA, Zoroofi R, Shirani G (2009) Rapid automatic segmentation and visualization of teeth in ct-scan data. J Appl Sci:9. https://doi.org/10.3923/jas.2009.2031.2044

  25. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. CoRR. arXiv:1512.033851512.03385

  26. Heinrich A, Güttler F, Schenkl S, Wagner R, Teichgräber U (2020) Automatic human identification based on dental x-ray radiographs using computer vision. Sci Rep 10(1):3801

    Article  Google Scholar 

  27. Hofer M, Marana AN (2007) Dental biometrics: Human identification based on dental work information. In: SIBGRAPI, pp 281–286

  28. Huang G, Liu Z, Weinberger KQ (2016) Densely connected convolutional networks. CoRR arXiv:1608.069931608.06993

  29. Hwang J-J, Jung Y-H, Cho B-H, Heo M-S (2019) An overview of deep learning in the field of dentistry. Imaging Sci Dentist 49:1. https://doi.org/10.5624/isd.2019.49.1.1

    Article  Google Scholar 

  30. Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer K (2016) Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 1mb model size. CoRR arXiv:1602.07360

  31. Jader G, Fontineli J, Ruiz M, Lima K, Pithon M, Oliveira L (2018) Deep instance segmentation of teeth in panoramic x-ray images, pp 400–407

  32. Jader G, Oliveira L, Pithon M (2018) Automatic segmenting teeth in x-ray images: Trends, a novel data set, benchmarking and future perspectives. Expert Syst Appl:107. https://doi.org/10.1016/j.eswa.2018.04.001

  33. Jain AK, Chen H (2004) Matching of dental x-ray images for human identification. Pattern Recogn 37(7):1519–1532

    Article  Google Scholar 

  34. Joseph LJ, George LB, Shabna GU, Susmi I, Santhi N (2016) Teeth feature extraction and matching for human identification using morphological skeleton transform. In: 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS), pp 802–807

  35. Kannala J, Rahtu E (2012) Bsif: Binarized statistical image features. In: ICPR2012, pp 1363–1366

  36. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges C J C, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems, vol 25. Curran Associates, Inc., pp 1097–1105

  37. Lai Y, Fan F, Wu Q, Ke W, Liao P, Deng Z, Chen H, Zhang Y (2020) Lcanet: Learnable connected attention network for human identification using dental images. IEEE Trans Med Imaging:1–1. https://doi.org/10.1109/TMI.2020.3041452

  38. Lan R, Zhou Y, Tang YY (2016) Quaternionic local ranking binary pattern: A local descriptor of color images. IEEE Trans Image Process 25(2):566–579

    Article  MathSciNet  Google Scholar 

  39. Lee C, Lim S-H, Huh K-H, Han S-S, Kim J-E, Heo M-S, Yi W-J, Lee S-S, Choi S-C (2019) Performance of dental pattern analysis system with treatment chronology on panoramic radiography. Forensic Sci Int 299:229–234

    Article  Google Scholar 

  40. Lee J-H, Han S-S, Kim Y, Lee C, Kim I (2019) Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology

  41. Lin P-L, Lai Y-H, Huang P-W (2012) Dental biometrics: human identification based on teeth and dental works in bitewing radiographs. Pattern Recogn 45(3):934–946

    Article  Google Scholar 

  42. Lin PL, Lai YH, Huang PW (2010) An effective classification and numbering system for dental bitewing radiographs using teeth region and contour information. Pattern Recogn 43(4):1380–1392

    Article  Google Scholar 

  43. Lorton L, Rethman M, Friedman R (1988) Computer-assisted postmortem identification (capmi) system: A computer-based identification program. J Forensic Sci 33:977–984

    Google Scholar 

  44. Matsuda S, Miyamoto T (2020) Personal identification with orthopantomography using simple convolutional neural networks: a preliminary study. Sci Rep:10

  45. Miki Y, Muramatsu C, Hayashi T, Zhou X, Hara T, Katsumata A, Fujita H (2017) Tooth labeling in cone-beam ct using deep convolutional neural network for forensic identification, pp 101343E

  46. McGivney J et al WinIDsoftware. http://www.winid.com, Accessed: 2021-06-01

  47. Nomir O, Abdel-Mottaleb M (2007) Human identification from dental x-ray images based on the shape and appearance of the teeth. IEEE Trans Inf Forensic Secur 2:188–197. https://doi.org/10.1109/TIFS.2007.897245

    Article  Google Scholar 

  48. Oktay AB (2017) Human identification with dental panoramic radiographic images. IET Biometr 7(4):349–355

    Article  Google Scholar 

  49. Petju M, Suteerayongprasert A, Thongpud R, Hassiri K (2007) Importance of dental records for victim identification following the indian ocean tsunami disaster in Thailand. Public Health 121(4):251–257

    Article  Google Scholar 

  50. Reesu GV, Woodsend B, Mnica S, Revie GF, Brown NL, Mossey PA (2020) Automated identification from dental data (autoidd): a new development in digital forensics. Forensic Sci Int 309:110218

    Article  Google Scholar 

  51. Shah N, Bansal N, Logani A (2014) Recent advances in imaging technologies in dentistry. World J Radiol 6:794–807. https://doi.org/10.4329/wjr.v6.i10.794

    Article  Google Scholar 

  52. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  53. Szegedy C, Wei Liu, Yangqing Jia, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–9

  54. Tan X, Triggs B (2007) Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: International workshop on analysis and modeling of faces and gestures, Springer, pp 168–182

  55. Tuzoff D, Tuzova L, Bornstein M, Krasnov A, Kharchenko M, Nikolenko S, Sveshnikov M, Bednenko G (2019) Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofacial Radiol 48:20180051

    Article  Google Scholar 

  56. Utsuno DDS (2019) Victim identification in large-scale disasters using dental findings. IATSS Res:43. https://doi.org/10.1016/j.iatssr.2019.06.005

  57. Vijayakumari B, Kirubalini RR, Manisha CR (2020) Cadaver identification with dental radiographs using isoperimetric and nodal graph approach. IET Biometr 9(1):38–45

    Article  Google Scholar 

  58. Vu N-S, Caplier A (2010) Face recognition with patterns of oriented edge magnitudes. In: Daniilidis K, Maragos P, Paragios N (eds) ECCV. Springer, Berlin, pp 313–326

  59. Wang Y-J, Liu S, Wang G, Liu Y (2018) Accurate tooth segmentation with improved hybrid active contour model. Phys Med Biol:64. https://doi.org/10.1088/1361-6560/aaf441

  60. Wu J, Rehg JM (2011) Centrist: A visual descriptor for scene categorization. IEEE Trans Pattern Anal Mach Intell 33(8):1489–1501

    Article  Google Scholar 

  61. Wu Q, Fan F, Liao P, Lai Y, Ke W, Du W, Chen H, Deng Z, Zhang Y (2021) Human identification with dental panoramic images based on deep learning. Sens Imaging:22. https://doi.org/10.1007/s11220-020-00326-y

  62. Zhang L, Zhou Z, Li H (2012) Binary gabor pattern: An efficient and robust descriptor for texture classification. In: 2012 19th IEEE international conference on image processing, pp 81–84

  63. Zhang X, Zhou X, Lin M, Sun J (2017) Shufflenet: An extremely efficient convolutional neural network for mobile devices. arXiv:1707.01083

  64. Zhang Z, Ong SH, Zhong X, Foong KWC (2016) Efficient 3d dental identification via signed feature histogram and learning keypoint detection. Pattern Recogn 60:189–204

    Article  Google Scholar 

  65. Zhong X, Yu D, Wong YS, Sim T, Lu WF, Foong KWC, Cheng H-L (2013) 3d dental biometrics: Alignment and matching of dental casts for human identification. Comput Ind 64(9):1355–1370. Special Issue: 3D Imaging in Industry

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayse Betul Oktay.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Z. Akhtar and A. Gurses contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oktay, A.B., Akhtar, Z. & Gurses, A. Dental biometric systems: a comparative study of conventional descriptors and deep learning-based features. Multimed Tools Appl 81, 28183–28206 (2022). https://doi.org/10.1007/s11042-022-12019-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12019-7

Keywords

Navigation