Weber’s law based multi-level convolution correlation features for image retrieval | Multimedia Tools and Applications Skip to main content

Advertisement

Log in

Weber’s law based multi-level convolution correlation features for image retrieval

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Weber’s law reveals the relationship between human perception and perceptual stimuli. Inspired by the theory, this paper designs a multi-level convolution correlation feature statistic method for image retrieval. Firstly, the difference between a central pixel and its neighbors is described by Weber’s law through computing the differential excitation of image. Then, a multi-level saliency map is obtained by binary transformation and convolution operation. Thirdly, to exploit spatial correlation information of the image, a pixels pair-wise correlation and hierarchy statistic model is constructed. Finally, all intermediate features are concatenated into one histogram, which includes salient color and texture features. Extensive experiments demonstrate the proposed method of this paper has excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bala A, Kaur T (2016) Local texton XOR patterns: A new feature descriptor for content-based image retrieval[J]. Eng Sci Technol Int J 19(1):101–112. https://doi.org/10.1016/j.jestch.2015.06.008

    Article  Google Scholar 

  2. Bay H, Tuytelaars T, Van Gool L (2006) SURF: Speeded Up robust features. Lecture Notes in Computer Science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 3951 LNCS: 404–417, https://doi.org/10.1007/11744023-32

  3. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE conference on computer vision and pattern recognition (CVPR). https://hal.inria.fr/file/index/docid/548512/filename/hog-cvpr2005.pdf, pp 886–893

  4. Fadaei S, Amirfattahi R, Ahmadzadeh MR (2017) Local derivative radial patterns: A new texture descriptor for content-based image retrieval[J]. Signal Process 137:274–286. https://doi.org/10.1016/j.sigpro.2017.02.013

    Article  Google Scholar 

  5. Harrison L, Yang F, Franconeri S et al (2014) Ranking visualizations of correlation using Weber’s Law[J]. IEEE Trans Vis Comput Graph 20 (12):1943–1952. https://doi.org/10.1109/TVCG.2014.2346979

    Article  Google Scholar 

  6. He L, Xie L, Shu H, et al. (2019) Discrete semi-supervised learning for multi-label image classification and large-scale image retrieval[J]. Multimedia Tools Appl 78(17):24519–24537. https://doi.org/10.1007/s11042-019-7157-8

    Article  Google Scholar 

  7. Jie C, Shiguang S, Chu H (2010) WLD: A Robust local image descriptor[J]. IEEE Trans Pattern Anal Mach Intell 32(9):1705–1720. https://doi.org/10.1109/TPAMI.2009.155

    Article  Google Scholar 

  8. Kalaiarasi G, Thyagharajan KK (2013) Visual content based clustering of near duplicate web search images. In: Proceedings of the 2013 international conference on green computing, communication and conservation of energy, ICGCE 2013, pp 767–771, DOI https://doi.org/10.1109/ICGCE.2013.6823537, (to appear in print)

  9. Kalaiarasi G, Thyagharajan KK (2019) Clustering of near duplicate images using bundled features. Clust Comput 22:11997–12007. https://doi.org/10.1007/s10586-017-1539-3

    Article  Google Scholar 

  10. Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks[J]. Adv Neural Inf Process Sys 2 (25):1097–1105. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  11. Li S, Gong D, Yuan Y (2013) Face recognition using Weber local descriptors[J]. Neurocomputing 122:272–283. https://doi.org/10.1016/j.neucom.2013.05.038

    Article  Google Scholar 

  12. Li Y, Wan L, Fu T et al (2019) Piecewise supervised deep hashing for image retrieval[J]. Multimedia Tools Appl 78 (17):24431–24451. https://doi.org/10.1007/s11042-018-7072-4

    Article  Google Scholar 

  13. Love D (2004) Distinctive image features from scale invariant features. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  14. Minu RI, Thyagarajan KK (2013) A novel approach to build image ontology using texton. Adv Intell Sys Comput 182 AISC:333–339. https://doi.org/10.1007/978-3-642-32063-7-35

    Article  Google Scholar 

  15. Minu RI, Thyagharajan KK (2014) Semantic rule based image visual feature ontology creation. Int J Autom Comput 11(5):489–499. https://doi.org/10.1007/s11633-014-0832-3

    Article  Google Scholar 

  16. Murala S, Wu QMJ, Balasubramanian R et al (2013) Joint histogram between color and local extrema patterns for object tracking[J]. Proc SPIE Int Soc Opt Eng 8663(4):86630T-86630T-7. https://doi.org/10.1117/12.2002185

    Article  Google Scholar 

  17. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  18. Qiwu L, Yichuang S, Pengcheng L et al (2018) Generalized completed local binary patterns for time-efficient steel surface defect classification[J]. IEEE Trans Inst Meas PP(99):1–13. https://doi.org/10.1109/TIM.2018.2852918

    Article  Google Scholar 

  19. Subrahmanyam M, Maheshwari RP, Balasubramanian R (2012) Local maximum edge binary patterns: A new descriptor for image retrieval and object tracking[J]. Signal Process 92(6):1467–1479. https://doi.org/10.1016/j.sigpro.2011.12.005

    Article  Google Scholar 

  20. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting Conditions[J]. IEEE Trans Image Process 19 (6):1635–1650. https://doi.org/10.1109/TIP.2010.2042645

    Article  MathSciNet  MATH  Google Scholar 

  21. Thyagharajan KK, Kalaiarasi G (2018) Pulse coupled neural network based near-duplicate detection of images. Adv Elec Comput Eng 18 (1582–7445):87–96. https://doi.org/10.4316/AECE.2018.03012

    Article  Google Scholar 

  22. Thyagharajan KK, Kiruba Raji I (2019) A review of visual descriptors and classification techniques used in leaf species identification. Arch Comput Methods Eng 26(4):933–960. https://doi.org/10.1007/s11831-018-9266-3

    Article  Google Scholar 

  23. Tiwari D, Tyagi V (2017) Improved Webers law based local binary pattern for dynamic texture recognition[J]. Multimedia Tools Appl 76(5):6623–6640. https://doi.org/10.1007/s11042-016-3362-x

    Article  Google Scholar 

  24. Uzuntarla M, Torres JJ, Calim A et al (2018) Synchronization-induced spike termination in networks of bistable neurons[J]. Neural Netw 110:131–140. https://doi.org/10.1016/j.neunet.2018.11.007

    Article  Google Scholar 

  25. Verma M, Raman B, Murala S (2015) Local extrema co-occurrence pattern for color and texture image retrieval[J]. Neurocomputing 165:255–269. https://doi.org/10.1016/j.neucom.2015.03.015

    Article  Google Scholar 

  26. Vigneshl T, Thyagharajan KK (2014) Local binary pattern texture feature for satellite imagery classification. In: 2014 international conference on science engineering and management research, ICSEMR, vol 2014, pp 1–6, DOI https://doi.org/10.1109/ICSEMR.2014.7043591

  27. Wan J, Wang D, Hoi SCH et al (2014) Deep learning for Content-Based image retrieval: A comprehensive study[C]//Proceedings of the ACM Int Conf Multimedia. ACM, https://doi.org/10.1145/2647868.2654948

  28. Wiatowski T, Bolcskei H (2015) A mathematical theory of deep convolutional neural networks for feature extraction. IEEE Trans Inf Theory 64 (3):1845–1866. https://doi.org/10.1109/TIT.2017.2776228

    Article  MathSciNet  MATH  Google Scholar 

  29. Yu L, Feng L, Chen C, et al. (2016) A novel multi-feature representation of images for heterogeneous IoTs[J]. IEEE Access 4:6204–6215. https://doi.org/10.1109/ACCESS.2016.2607841

    Article  Google Scholar 

  30. Yu L, Feng L, Wang H, et al. (2018) Multi-trend binary code descriptor: a novel local texture feature descriptor for image retrieval[J]. SIViP 12 (2):247–254. https://doi.org/10.1007/s11760-017-1152-1

    Article  Google Scholar 

  31. Zeng F, Hu S, Xiao K (2019) Deep hash for latent image retrieval[J]. Multimedia Tools Appl 78(22):32419–32435. https://doi.org/10.1007/s11042-019-07980-9

    Article  Google Scholar 

  32. Zhang S, Lan X, Yao H, et al. (2017) A biologically inspired appearance model for robust visual Tracking[J]. IEEE Trans Neural Netw Learn Sys 28(10):2357–2370. https://doi.org/10.1109/TNNLS.2016.2586194

    Article  MathSciNet  Google Scholar 

  33. Zhao M, Zhang H, Sun J (2016) A novel image retrieval method based on multi-trend structure descriptor[J]. J Vis Commun Image Represent 38:73–81. https://doi.org/10.1016/j.jvcir.2016.02.016

    Article  Google Scholar 

  34. Zhou W, Li H, Tian Q (2017) Recent advance in content-based image retrieval: a literature survey. arXiv:1706.06064

  35. Zhou H, Tao Y, Shi J et al (2019) Large scale image retrieval with DCNN and local geometrical constraint model[J]. Multimedia Tools Appl 78(17):24391–24406. https://doi.org/10.1007/s11042-018-7036-8

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Development Plan Project of the Science and Technology Department of Henan Province(No.212102210400, No.182102310034, No.182102210151), Key Science and Technology Research Project of the Education Department of Henan Province(No.20A520047), Zhoukou Normal University High-level Talents Research Funding Project (No.ZKNUC2018005), National Nature Science Foundation of China(No.61672130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to LaiHang Yu or NingZhong Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Liu, N., Zhou, W. et al. Weber’s law based multi-level convolution correlation features for image retrieval. Multimed Tools Appl 80, 19157–19177 (2021). https://doi.org/10.1007/s11042-020-10355-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10355-0

Keywords

Navigation