Abstract
Weber’s law reveals the relationship between human perception and perceptual stimuli. Inspired by the theory, this paper designs a multi-level convolution correlation feature statistic method for image retrieval. Firstly, the difference between a central pixel and its neighbors is described by Weber’s law through computing the differential excitation of image. Then, a multi-level saliency map is obtained by binary transformation and convolution operation. Thirdly, to exploit spatial correlation information of the image, a pixels pair-wise correlation and hierarchy statistic model is constructed. Finally, all intermediate features are concatenated into one histogram, which includes salient color and texture features. Extensive experiments demonstrate the proposed method of this paper has excellent performance.
Similar content being viewed by others
References
Bala A, Kaur T (2016) Local texton XOR patterns: A new feature descriptor for content-based image retrieval[J]. Eng Sci Technol Int J 19(1):101–112. https://doi.org/10.1016/j.jestch.2015.06.008
Bay H, Tuytelaars T, Van Gool L (2006) SURF: Speeded Up robust features. Lecture Notes in Computer Science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 3951 LNCS: 404–417, https://doi.org/10.1007/11744023-32
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE conference on computer vision and pattern recognition (CVPR). https://hal.inria.fr/file/index/docid/548512/filename/hog-cvpr2005.pdf, pp 886–893
Fadaei S, Amirfattahi R, Ahmadzadeh MR (2017) Local derivative radial patterns: A new texture descriptor for content-based image retrieval[J]. Signal Process 137:274–286. https://doi.org/10.1016/j.sigpro.2017.02.013
Harrison L, Yang F, Franconeri S et al (2014) Ranking visualizations of correlation using Weber’s Law[J]. IEEE Trans Vis Comput Graph 20 (12):1943–1952. https://doi.org/10.1109/TVCG.2014.2346979
He L, Xie L, Shu H, et al. (2019) Discrete semi-supervised learning for multi-label image classification and large-scale image retrieval[J]. Multimedia Tools Appl 78(17):24519–24537. https://doi.org/10.1007/s11042-019-7157-8
Jie C, Shiguang S, Chu H (2010) WLD: A Robust local image descriptor[J]. IEEE Trans Pattern Anal Mach Intell 32(9):1705–1720. https://doi.org/10.1109/TPAMI.2009.155
Kalaiarasi G, Thyagharajan KK (2013) Visual content based clustering of near duplicate web search images. In: Proceedings of the 2013 international conference on green computing, communication and conservation of energy, ICGCE 2013, pp 767–771, DOI https://doi.org/10.1109/ICGCE.2013.6823537, (to appear in print)
Kalaiarasi G, Thyagharajan KK (2019) Clustering of near duplicate images using bundled features. Clust Comput 22:11997–12007. https://doi.org/10.1007/s10586-017-1539-3
Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks[J]. Adv Neural Inf Process Sys 2 (25):1097–1105. https://doi.org/10.1145/3065386
Li S, Gong D, Yuan Y (2013) Face recognition using Weber local descriptors[J]. Neurocomputing 122:272–283. https://doi.org/10.1016/j.neucom.2013.05.038
Li Y, Wan L, Fu T et al (2019) Piecewise supervised deep hashing for image retrieval[J]. Multimedia Tools Appl 78 (17):24431–24451. https://doi.org/10.1007/s11042-018-7072-4
Love D (2004) Distinctive image features from scale invariant features. Int J Comput Vis 60(2):91–110
Minu RI, Thyagarajan KK (2013) A novel approach to build image ontology using texton. Adv Intell Sys Comput 182 AISC:333–339. https://doi.org/10.1007/978-3-642-32063-7-35
Minu RI, Thyagharajan KK (2014) Semantic rule based image visual feature ontology creation. Int J Autom Comput 11(5):489–499. https://doi.org/10.1007/s11633-014-0832-3
Murala S, Wu QMJ, Balasubramanian R et al (2013) Joint histogram between color and local extrema patterns for object tracking[J]. Proc SPIE Int Soc Opt Eng 8663(4):86630T-86630T-7. https://doi.org/10.1117/12.2002185
Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623
Qiwu L, Yichuang S, Pengcheng L et al (2018) Generalized completed local binary patterns for time-efficient steel surface defect classification[J]. IEEE Trans Inst Meas PP(99):1–13. https://doi.org/10.1109/TIM.2018.2852918
Subrahmanyam M, Maheshwari RP, Balasubramanian R (2012) Local maximum edge binary patterns: A new descriptor for image retrieval and object tracking[J]. Signal Process 92(6):1467–1479. https://doi.org/10.1016/j.sigpro.2011.12.005
Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting Conditions[J]. IEEE Trans Image Process 19 (6):1635–1650. https://doi.org/10.1109/TIP.2010.2042645
Thyagharajan KK, Kalaiarasi G (2018) Pulse coupled neural network based near-duplicate detection of images. Adv Elec Comput Eng 18 (1582–7445):87–96. https://doi.org/10.4316/AECE.2018.03012
Thyagharajan KK, Kiruba Raji I (2019) A review of visual descriptors and classification techniques used in leaf species identification. Arch Comput Methods Eng 26(4):933–960. https://doi.org/10.1007/s11831-018-9266-3
Tiwari D, Tyagi V (2017) Improved Webers law based local binary pattern for dynamic texture recognition[J]. Multimedia Tools Appl 76(5):6623–6640. https://doi.org/10.1007/s11042-016-3362-x
Uzuntarla M, Torres JJ, Calim A et al (2018) Synchronization-induced spike termination in networks of bistable neurons[J]. Neural Netw 110:131–140. https://doi.org/10.1016/j.neunet.2018.11.007
Verma M, Raman B, Murala S (2015) Local extrema co-occurrence pattern for color and texture image retrieval[J]. Neurocomputing 165:255–269. https://doi.org/10.1016/j.neucom.2015.03.015
Vigneshl T, Thyagharajan KK (2014) Local binary pattern texture feature for satellite imagery classification. In: 2014 international conference on science engineering and management research, ICSEMR, vol 2014, pp 1–6, DOI https://doi.org/10.1109/ICSEMR.2014.7043591
Wan J, Wang D, Hoi SCH et al (2014) Deep learning for Content-Based image retrieval: A comprehensive study[C]//Proceedings of the ACM Int Conf Multimedia. ACM, https://doi.org/10.1145/2647868.2654948
Wiatowski T, Bolcskei H (2015) A mathematical theory of deep convolutional neural networks for feature extraction. IEEE Trans Inf Theory 64 (3):1845–1866. https://doi.org/10.1109/TIT.2017.2776228
Yu L, Feng L, Chen C, et al. (2016) A novel multi-feature representation of images for heterogeneous IoTs[J]. IEEE Access 4:6204–6215. https://doi.org/10.1109/ACCESS.2016.2607841
Yu L, Feng L, Wang H, et al. (2018) Multi-trend binary code descriptor: a novel local texture feature descriptor for image retrieval[J]. SIViP 12 (2):247–254. https://doi.org/10.1007/s11760-017-1152-1
Zeng F, Hu S, Xiao K (2019) Deep hash for latent image retrieval[J]. Multimedia Tools Appl 78(22):32419–32435. https://doi.org/10.1007/s11042-019-07980-9
Zhang S, Lan X, Yao H, et al. (2017) A biologically inspired appearance model for robust visual Tracking[J]. IEEE Trans Neural Netw Learn Sys 28(10):2357–2370. https://doi.org/10.1109/TNNLS.2016.2586194
Zhao M, Zhang H, Sun J (2016) A novel image retrieval method based on multi-trend structure descriptor[J]. J Vis Commun Image Represent 38:73–81. https://doi.org/10.1016/j.jvcir.2016.02.016
Zhou W, Li H, Tian Q (2017) Recent advance in content-based image retrieval: a literature survey. arXiv:1706.06064
Zhou H, Tao Y, Shi J et al (2019) Large scale image retrieval with DCNN and local geometrical constraint model[J]. Multimedia Tools Appl 78(17):24391–24406. https://doi.org/10.1007/s11042-018-7036-8
Acknowledgements
This work was supported by Key Development Plan Project of the Science and Technology Department of Henan Province(No.212102210400, No.182102310034, No.182102210151), Key Science and Technology Research Project of the Education Department of Henan Province(No.20A520047), Zhoukou Normal University High-level Talents Research Funding Project (No.ZKNUC2018005), National Nature Science Foundation of China(No.61672130).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yu, L., Liu, N., Zhou, W. et al. Weber’s law based multi-level convolution correlation features for image retrieval. Multimed Tools Appl 80, 19157–19177 (2021). https://doi.org/10.1007/s11042-020-10355-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-020-10355-0