Forensics of visual privacy protection in digital images | Multimedia Tools and Applications Skip to main content
Log in

Forensics of visual privacy protection in digital images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Visual privacy protection (VPP) is to protect individual’s privacy information in digital images or videos against being seen, such as portrait etc. Once being protected, the privacy may be imperceptible. Forensics of visual privacy protection is becoming a new challenge. As a main visual privacy protection technology, blur operation is always used in VPP. When using the existing approaches such as blur segmentation to detect the images, natural blur or other solid color regions will be falsely alarmed, resulting in low precision. In this paper, we present a novel metric invisibility degree (IvD) to measure the privacy protected blur degree of each pixel. The proposed IvD is defined by calculating the similarity between the test image and the re-blurred image in joint transformation and spatial domain, which could significantly enhance the difference between the privacy protected blur region and the other regions. Then, an effective method based on IvD is developed to automatically forensic and localize the visual privacy protection regions. Firstly, the IvD in block DCT domain of each pixel is calculated, and a IvD map is obtained. Secondly, using the IvD map, the test image is segmented and followed by morphological operation to decrease the mis-alarm regions. Finally, a spatial texture feature descriptor, including gray statistics, smoothness and information capacity, is developed, based on which the detection result is further refined. Experimental results show that the proposed method can detect the privacy regions accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://github.com/mming5106/Forensics-of-Visual-Privacy-Protection-in-Digital-Images

References

  1. Avidan S, Butman M (2006) Blind vision. Lecture notes in computer science: 1–13

  2. Bao L, Zhou Y (2015) Image encryption: Generating visually meaningful encrypted images. Inf Sci 324:197–207

    Article  MathSciNet  MATH  Google Scholar 

  3. Barni M, Bianchi T, Catalano D, Raimondo MD, Labati RD, Failla P, Fiore D, Lazzeretti R, Piuri V, Scotti F (2010) Privacy-preserving fingercode authentication. In: ACM workshop on multimedia and security, pp 231-240. New York, USA

  4. Business insider. https://www.businessinsider.com/seattle-bar-bans-google-glass-2013-3. [Online]

  5. Cao G, Zhao Y, Ni R, Li X (2014) Contrast enhancement-based forensics in digital images. IEEE Trans Inf Foren Sec 9(3):515–525

    Article  Google Scholar 

  6. Chaaraoui AA, Climent-Pérez P, Flórez-Revuelta F (2012) A review on vision techniques applied to human behaviour analysis for ambient-assisted living. Expert Syst Appl 39(12):10873–10888

    Article  Google Scholar 

  7. Chaaraoui AA, Climent-Pérez P, Flórez-Revuelta F (2012) An efficient approach for multi-view human action recognition based on Bag-Of-Key-Poses. Springer, Berlin. https://doi.org/10.1007/978-3-642-34014-7_3

  8. Chen J, Lu W, Yeung Y, Xue Y, Liu X, Lin C, Zhang Y (2018) Binary image steganalysis based on distortion level co-occurrence matrix. Comput Mater Continua 55(2):201–211

    Google Scholar 

  9. Chen B, Wu X, Lu W, Ren H (2019) Reversible data hiding in encrypted images with additive and multiplicative public-key homomorphism. Signal Process 164:48–57. https://doi.org/10.1016/j.sigpro.2019.05.036

    Article  Google Scholar 

  10. Cheung SCS, Paruchuri JK, Nguyen TP (2008) Managing privacy data in pervasive camera networks. In: IEEE International conference on image processing, pp 1676–1679

  11. Cho S, Lee S (2009) Fast motion deblurring. ACM Transactions On Graphics 28(5):1–8

    Article  Google Scholar 

  12. Crete F, Nicolas M (2007) The blur effect: perception and estimation with a new no-reference perceptual blur metric. Proceedings of SPIE - The International Society for Optical Engineering 12:64920I-64920I-11

    Google Scholar 

  13. Erkin Z, Franz M, Guajardo J, Katzenbeisser S, Lagendijk I, Toft T (2009) Privacy-preserving face recognition. In: Privacy enhancing technologies, pp 235–253. Seattle, USA

  14. Frome A, Cheung G, Abdulkader A, Zennaro M (2009) Large-scale privacy protection in google street view. In: IEEE International conference on computer vision, pp 2373–2380

  15. Hu S, Wang Q, Wang J, Qin Z, Ren K (2016) Secsift: Privacy-preserving outsourcing computation of feature extractions over encrypted image data. IEEE Trans Image Process 25(7):3411–3425

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu X, Zhang W, Hu H, Yu N (2014) Non-local denoising in encrypted images. In: International conference on internet of vehicles, pp 386–395. Beijing, China

  17. Hua Z, Zhou Y, Pun C, Chen CLP (2015) 2d sine logistic modulation map for image encryption. Inf Sci 297:80–94

    Article  Google Scholar 

  18. Huang X, Liu Z, Lu W, Liu H, Xiang S (2019) Fast and effective copy-move detection of digital audio based on auto segment. International Journal of Digital Crime and Forensics (IJDCF) 11(2):47–62

    Article  Google Scholar 

  19. Javaran TA, Hassanpour H, Abolghasemi V (2015) Automatic estimation and segmentation of partial blur in natural images. Visual Comput 33:1–11

    Google Scholar 

  20. Kitahara I, Kogure K, Hagita N (2004) Stealth vision for protecting privacy. In: International conference on pattern recognition, vol 4, pp 404–407

  21. Li J, Lu W (2016) Blind image motion deblurring with l0-regularized priors. J Vis Commun Image Represent 40:14–23

    Article  Google Scholar 

  22. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20 (12):3524–3533

    Article  MathSciNet  MATH  Google Scholar 

  23. Li G, Ito Y, Yu X, Nitta N, Babaguchi N (2009) Recoverable privacy protection for video content distribution. Eurasip J Info Sec 2009(1):4

    Google Scholar 

  24. Li J, Fan Y, Lu W, Sun W (2016) Keypoint-based copy-move detection scheme by adopting mscrs and improved feature matching. Multimedia Tools and Applications: 1–15

  25. Li X, Li B, Yang B, Zeng T (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22 (6):2181–2191

    Article  MathSciNet  MATH  Google Scholar 

  26. Li X, Zhang W, Gui X, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inf Foren Sec 8(7):1091–1100

    Article  Google Scholar 

  27. Liao X, Li K, Yin J (2017) Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimedia Tools and Applications 76(20):20739–20753

    Article  Google Scholar 

  28. Liao X, Qin Z, Ding L (2017) Data embedding in digital images using critical functions. Signal Process Image Commun 58:146–156

    Article  Google Scholar 

  29. Liao X, Guo S, Yin J, Wang H, Li X, Sangaiah AK (2018) New cubic reference table based image steganography. Multimedia Tools and Applications: 1–18

  30. Lin C, Lu W, Huang X, Liu K, Sun W, Lin H, Tan Z (2018) Copy-move forgery detection using combined features and transitive matching. Multimedia Tools and Applications: 1–16

  31. Lin C, Lu W, Sun W, Zeng J, Xu T, Lai JH (2018) Region duplication detection based on image segmentation and keypoint contexts. Multimedia Tools and Applications: 1–18

  32. Lin C, Lu W, Huang X, Liu K, Sun W, Lin H (2019) Region duplication detection based on hybrid feature and evaluative clustering. Multimedia Tools and Applications: 1–25

  33. Lin WS, Tjoa SK, Zhao HV, Liu KJR (2009) Digital image source coder forensics via intrinsic fingerprints. IEEE Trans Inf Foren Sec 4(3):460–475

    Article  Google Scholar 

  34. Liu Z, Lu W (2017) Fast copy-move detection of digital audio. In: 2017 IEEE Second international conference on data science in cyberspace (DSC). IEEE, pp 625–629

  35. Liu X, Lu W, Huang T, Liu H, Xue Y, Yeung Y (2018) Scaling factor estimation on jpeg compressed images by cyclostationarity analysis. Multimedia Tools and Applications: 1–18

  36. Liu J, Lu W, Weng J, Mao Y, Li G (2018) Double jpeg compression detection based on block statistics. Multimedia Tools and Applications 77(2):1–16

    Google Scholar 

  37. Liu X, Lu W, Liu W, Luo S, Liang Y, Li M (2019) Image deblocking detection based on a convolutional neural network. IEEE Access 7:26432–26439

    Article  Google Scholar 

  38. Liu J, Lu W, Zhan Y, Chen J, Xu Z, Li R (2019) Efficient binary image steganalysis based on ensemble neural network of multi-module. J Real-Time Image Process. https://doi.org/10.1007/s11554-019-00885-8

  39. Liu X, Lu W, Zhang Q, Huang J, Shi YQ (2019) Downscaling factor estimation on pre-jpeg compressed images. IEEE Trans Circuits Syst Video Technol PP(99):1–1

    Google Scholar 

  40. Lu W, He L, Yeung Y, Xue Y, Liu H, Feng B (2018) Secure binary image steganography based on fused distortion measurement. IEEE Trans Circuits Syst Video Technol: 1–1. https://doi.org/10.1109/TCSVT.2018.2852702

  41. Lu W, Li R, Zeng L, Chen J, Huang J, Shi YQ (2019) Binary image steganalysis based on histogram of structuring elements. IEEE Trans Circuits Syst Video Technol: 1–1. https://doi.org/10.1109/TCSVT.2019.2936028

  42. Lu W, Xue Y, Yeung Y, Liu H, Huang J, Shi YQ (2019) Secure halftone image steganography based on pixel density transition. IEEE Transactions on Dependable and Secure Computing: 1–1. https://doi.org/10.1109/TDSC.2019.2933621

  43. Luo X, Song X, Li X, Zhang W, Lu J, Yang C, Liu F (2016) Steganalysis of hugo steganography based on parameter recognition of syndrome-trellis-codes. Multimedia Tools and Applications 75(21):13557–13583

    Article  Google Scholar 

  44. Ma Y, Luo X, Li X, Bao Z, Zhang Y (2019) Selection of rich model steganalysis features based on decision rough set α -positive region reduction. IEEE Trans Circuits Syst Video Technol 29(2):336–350

    Article  Google Scholar 

  45. Mitskog TF, Ralston RA (2012) Camera blocker for a device with an integrated camera that uses a thin film organic polymer. US Patent App. 13/477,485

  46. Muhammad K, Ahmad J, Farman H, Jan Z, Sajjad M, Baik SW (2015) A secure method for color image steganography using gray-level modification and multi-level encryption. TIIS 9(5):1938–1962

    Google Scholar 

  47. Muhammad K, Ahmad J, Rehman NU, Jan Z, Sajjad M (2017) Cisska-lsb: color image steganography using stego key-directed adaptive lsb substitution method. Multimedia Tools and Applications 76(6):8597–8626

    Article  Google Scholar 

  48. Muhammad K, Sajjad M, Baik SW (2016) Dual-level security based cyclic18 steganographic method and its application for secure transmission of keyframes during wireless capsule endoscopy. Journal Med Syst 40(5):114

    Article  Google Scholar 

  49. Muhammad K, Sajjad M, Mehmood I, Rho S, Baik SW (2016) A novel magic lsb substitution method (m-lsb-sm) using multi-level encryption and achromatic component of an image. Multimedia Tools and Applications 75(22):14867–14893

    Article  Google Scholar 

  50. Muhammad K, Sajjad M, Mehmood I, Rho S, Baik SW (2018) Image steganography using uncorrelated color space and its application for security of visual contents in online social networks. Futur Gener Comput Syst 86:951–960

    Article  Google Scholar 

  51. Neustaedter C, Greenberg S (2003) The design of a context-aware home media space for balancing privacy and awareness. Proc Ubicomp 2864:297–314

    Google Scholar 

  52. Neustaedter C, Greenberg S, Boyle M (2006) Blur filtration fails to preserve privacy for home-based video conferencing. ACM Transactions on Computer-Human Interaction (TOCHI) 13(1):1–36

    Article  Google Scholar 

  53. Ng PL, Ang LM, Seng KP (2010) Privacy preserving stereoscopic vision with one-bit transform. In: IEEE International conference on computer science and information technology, pp 70–74

  54. Ou B, Li X, Zhao Y, Ni R, Shi YQ (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22(12):5010–5021

    Article  MathSciNet  MATH  Google Scholar 

  55. Padilla-López J. R., Chaaraoui AA, Flórez-Revuelta F. (2015) Visual privacy protection methods: a survey. Expert Syst Appl 42(9):4177–4195

    Article  Google Scholar 

  56. Peter A, Hartmann T, Muller S, Katzenbeisser S (2013) Privacy-preserving architecture for forensic image recognition. In: IEEE International workshop on information forensics and security, pp 79–84. Tenerife, Spain

  57. Qian Z, Zhang X, Wang S (2014) Reversible data hiding in encrypted jpeg bitstream. IEEE Transactions on Multimedia 16(5):1486–1491

    Article  Google Scholar 

  58. Qin Z, Yan J, Ren K, Chen CW, Wang C (2014) Towards efficient privacy-preserving image feature extraction in cloud computing. In: Proceedings of the 22nd ACM international conference on multimedia, pp 497–506. New York, USA

  59. Ran X, Farvardin N (1995) A perceptually motivated three-component image model-part i: description of the model. IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society 4(4):401–15

    Article  Google Scholar 

  60. Redacted. https://www.producthunt.com/posts/redacted-for-ios. [Online]

  61. Ren Z, Jae Lee Y, Ryoo MS (2018) Learning to anonymize faces for privacy preserving action detection. In: Proceedings of the european conference on computer vision (ECCV), pp 620–636

  62. Ryoo MS, Rothrock B, Fleming C, Yang HJ (2017) Privacy-preserving human activity recognition from extreme low resolution. National conference on artificial intelligence, pp 4255–4262

  63. Sadeghi AR, Schneider T, Wehrenberg I (2009) Efficient privacy-preserving face recognition. In: International conference on information security and cryptology, pp 229–244. Seoul, Korea

  64. Saghaiannejadesfahani SM, Luo Y, Cheung SS (2013) Privacy protected image denoising with secret shares. In: IEEE International conference on image processing, pp 253-256. Orlando, USA

  65. Shi J, Xu L, Jia J (2014) Discriminative blur detection features. In: IEEE Conference on computer vision and pattern recognition, pp 2965–2972. Columbus, USA

  66. Su B, Lu S, Tan CL (2011) Blurred image region detection and classification. In: International conference on multimedea 2011, pp 1397–1400. Scottsdale, USA

  67. Usage of image file formats for websites. https://w3techs.com/technologies/overview/image_format/all. [Online]

  68. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13 (4):600

    Article  Google Scholar 

  69. Wang W, Dong J, Tan T (2014) Exploring DCT coefficient quantization effects for local tampering detection. IEEE Trans Inf Foren Sec 9(10):1653–1666

    Article  Google Scholar 

  70. Wang R, Lu W, Liu J, Xiang S, Zhao X, Wang J (2018) Digital image splicing detection based on markov features in QDCT and QWT domain. International Journal of Digital Crime and Forensics (IJDCF) 10(4):90–107

    Article  Google Scholar 

  71. Weng S, Zhao Y, Pan JS, Ni R (2008) Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Process Lett 15:721–724

    Article  Google Scholar 

  72. Wu Z, Wang Z, Wang Z, Jin H (2018) Towards privacy-preserving visual recognition via adversarial training: a pilot study. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 606–624

  73. Xiao H, Lu W, Li R, Zhong N, Yeung Y, Chen J, Xue F, Sun W (2019) Defocus blur detection based on multiscale svd fusion in gradient domain. J Vis Commun Image Represent 59:52–61

    Article  Google Scholar 

  74. Xie Z, Lu W, Liu X, Xue Y, Yeung Y (2018) Copy-move detection of digital audio based on multi-feature decision. J Info Secu Appl 43:37–46

    Google Scholar 

  75. Xue F, Ye Z, Lu W, Liu H, Li B (2017) MSE Period based estimation of first quantization step in double compressed jpeg images. Signal Process Image Commu 57:76–83

    Article  Google Scholar 

  76. Xue Y, Liu W, Lu W, Yeung Y, Liu X, Liu H (2018) Efficient halftone image steganography based on dispersion degree optimization. J Real-Time Image Proc: 1–9

  77. Yang F, Li J, Lu W, Weng J (2017) Copy-move forgery detection based on hybrid features. Eng Appl Artif Intell 59:73–83

    Article  Google Scholar 

  78. Yeung Y, Lu W, Xue Y, Huang J, Shi YQ (2019) Secure binary image steganography with distortion measurement based on prediction. IEEE Trans Circuits Syst Video Technol: 1–1. https://doi.org/10.1109/TCSVT.2019.2903432

  79. Yi S, Zhou Y (2019) Separable and reversible data hiding in encrypted images using parametric binary tree labeling. IEEE Transactions on Multimedia 21(1):51–64

    Article  Google Scholar 

  80. Yi S, Zhou Y, Hua Z (2018) Reversible data hiding in encrypted images using adaptive block-level prediction-error expansion. Signal Processing-Image Commun 64:78–88

    Article  Google Scholar 

  81. Zhang X, Wang S (2006) Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10(11):781–783

    Article  Google Scholar 

  82. Zhang L, Liu K, Li XY, Feng P, Liu C, Liu Y (2014) Enable portrait privacy protection in photo capturing and sharing. arXiv:1410.6582

  83. Zhang F, Lu W, Liu H, Xue F (2018) Natural image deblurring based on L0-regularization and kernel shape optimization. Multimedia Tools and Applications 2 (2):1–19

    Google Scholar 

  84. Zhang J, Lu W, Yin X, Liu W, Yeung Y (2019) Binary image steganography based on joint distortion measurement. J Vis Commun Image Represent 58:600–605

    Article  Google Scholar 

  85. Zhang Q, Lu W, Jian W (2016) Joint image splicing detection in dct and contourlet transform domain. J Vis Commun Image Represent 40:449–458

    Article  Google Scholar 

  86. Zhang Q, Lu W, Wang R, Li G (2018) Digital image splicing detection based on Markov features in block dwt domain. Multimedia Tools and Applications 77 (3):1–22

    Google Scholar 

  87. Zhang C, Rui Y, He LW (2006) Light weight background blurring for video conferencing applications. In: IEEE International conference on image processing, pp 481–484

  88. Zhang X, Wang S, Qian Z, Feng G (2011) Reference sharing mechanism for watermark self-embedding. IEEE Trans Image Process 20(2):485–495

    Article  MathSciNet  MATH  Google Scholar 

  89. Zhang Y, Qin C, Zhang W, Liu F, Luo X (2018) On the fault-tolerant performance for a class of robust image steganography. Signal Process 146:99–111

    Article  Google Scholar 

  90. Zheng P, Huang J (2013) Discrete wavelet transform and data expansion reduction in homomorphic encrypted domain. IEEE Trans Image Process 22(6):2455–68

    Article  MathSciNet  MATH  Google Scholar 

  91. Zhou Y, Cao W, Chen CLP (2014) Image encryption using binary bitplane. Signal Process 100:197–207

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. U1736118), the Key Areas R&D Program of Guangdong (No. 2019B010136002), the Key Scientific Research Program of Guangzhou (No. 201804020068), the Natural Science Foundation of Guangdong (No. 2016A030313350), the Special Funds for Science and Technology Development of Guangdong (No. 2016KZ010103), Shanghai Minsheng Science and Technology Support Program (17DZ1205500), Shanghai Sailing Program (17YF1420000), the Fundamental Research Funds for the Central Universities (No. 16lgjc83 and No. 17lgjc45).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, F., Lu, W., Ren, H. et al. Forensics of visual privacy protection in digital images. Multimed Tools Appl 79, 12427–12445 (2020). https://doi.org/10.1007/s11042-019-08304-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08304-7

Keywords

Navigation