A region-adaptive semi-fragile dual watermarking scheme | Multimedia Tools and Applications Skip to main content
Log in

A region-adaptive semi-fragile dual watermarking scheme

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Since existing watermarking schemes usually have only a single function, a region-adaptive semi-fragile dual watermarking scheme is proposed, taking into account both watermark embedding capacity and security. The dual watermarks refer to the robust watermark and the fragile watermark. The original image is divided into three regions, i.e., a no watermark region, a fragile watermark region, and a robust watermark region, and, then, the interrelated robust and fragile watermarks are embedded into different regions. The robust and fragile watermarks do not relate to embedding order, and the extracted fragile watermark further strengthens the extracted robust watermark, which makes it more adaptable to the Human Visual System (HVS). Different techniques have been developed to embed different types of watermarks. To increase the embedding capacity and achieve blind extraction, a status code technology was used to embed the robust watermark. To resist the erase attack and achieve blind extraction, a new special bit substitution technology is proposed to embed the fragile watermark. The experimental results show that the proposed dual watermark scheme has higher PSNR, better security, and larger capacity and also achieves the dual functions of copyright protection and integrity verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Arsalan M, Malik SA, Khan A (2012) Intelligent reversible watermarking in integer wavelet domain for medical images. J Syst Softw 85(4):883–894. doi:10.1016/j.jss.2011.11.005

    Article  Google Scholar 

  2. Aziz SM, Pham DM (2012) Efficient parallel architecture for multi-level forward discrete wavelet transform processors. Comput Electr Eng 38(5):1325–1335. doi:10.1016/j.compeleceng.2012.05.009

    Article  Google Scholar 

  3. Calderbank AR, Daubechies I, Sweldens W et al (1998) Wavelet transforms that map integers to integers. Appl Comput Harmon Anal 5(3):332–369. doi:10.1006/acha.1997.0238

    Article  MathSciNet  MATH  Google Scholar 

  4. Chamlawi R, Khan A, Usman I (2010) Authentication and recovery of images using multiple watermarks. Comput Electr Eng 36(3):578–584. doi:10.1016/j.compeleceng. 2009.12.003

    Article  MATH  Google Scholar 

  5. Chemak C, Bouhlel M S, Lapayre J C (2007) A new scheme of robust image watermarking: the double watermarking algorithm. In: Proceedings of the 2007 summer computer simulation conference, pp 1201–1208

  6. Chen F, He HJ, Wang HX (2012) Variable-Payload self-recovery watermarking scheme for digital image authentication. Chin J Comput 35(1):154–162. doi:10.3724/SP.J. 1016.2012.00154

    Article  MathSciNet  Google Scholar 

  7. Cox I, Miller M, Bloom J et al (2001) Digital watermarking. Morgan Kaufmann, Burlington

    Google Scholar 

  8. Habib M, Sarhan S, Rajab L (2005) A robust-fragile dual watermarking system in the DCT domain. In: Proceedings of the 9th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, pp 548–553.

  9. Hartung F, Kutter M (1999) Multimedia watermarking techniques. Proceedings of the IEEE special issue on Protection of Multimedia Content, pp 1062–1087. doi: 10.1109/5.771066

  10. Hsia CH, Guo JM (2014) Efficient modified directional lifting-based discrete wavelet transform for moving object detection. Signal Process 96(3):138–152. doi:10.1016/j.sigpro.2013.09.007

    Article  Google Scholar 

  11. Lee TY, Lin SD (2008) Dual watermark for image tamper detection and recovery. Pattern Recogn 41(11):3497–3506. doi:10.1016/j.patcog.2008.05.003

    Article  MATH  Google Scholar 

  12. Li QH, Ren GQ, Wu QZ, Zhang XY (2013) Rate pre-allocated compression for mapping image based on wavelet and rate-distortion theory. Int J Light Electron Opt 124(14):1836–1840. doi:10.1016/j.ijleo.2012.05.045

    Article  Google Scholar 

  13. Li C, Wang Y, Ma B et al (2012) Tamper detection and self-recovery of biometric images using salient region-based authentication watermarking scheme. Comput Stand Interfaces 34(4):367–379. doi:10.1016/j.csi.2012.01.003

    Article  MathSciNet  Google Scholar 

  14. Nikolaidis N, Pitas I (1998) Robust image watermarking in the spatial domain. Signal Process 66(3):385–403. doi:10.1016/S0165-1684(98)00017-6

    Article  MATH  Google Scholar 

  15. Niu SZ, Shu NF (2009) A digital image double watermarking algorithm based on DCT domain. J Comput Res Dev 46(4):6–10

    Google Scholar 

  16. Petitcolas FAP (2000) Watermarking schemes evaluation. IEEE Signal Process Mag 17(5):58–64. doi:10.1109/79.879339

    Article  Google Scholar 

  17. Phadikar A, Maity SP, Mandal M (2012) Novel wavelet-based QIM data hiding technique for tamper detection and correction of digital images. J Vis Commun Image Represent 23(3):454–466. doi:10.1016/j.jvcir.2012.01.005

    Article  Google Scholar 

  18. Piva A, Bartolini F, Caldelli R (2005) Self-recovery authentication of images in the DWT domain. Int J Image Graph 5(1):149–165. doi:10.1142/S0219467805001707

    Article  Google Scholar 

  19. Podilchuk CI, Delp EJ (2001) Digital watermarking: algorithms and applications. IEEE Signal Process Mag 18(4):33–46. doi:10.1109/79.939835

    Article  Google Scholar 

  20. Pratumnopharat P, Leung PS, Court RS (2014) Wavelet transform-based stress-time history editing of horizontal axis wind turbine blades. Renew Energy 63(3):558–575. doi:10.1016/j.renene.2013.10.017

    Article  Google Scholar 

  21. Sharkas M, ElShafie D, Hamdy N (2005) A dual digital-image watermarking technique. In: Proceedings of International Conference on World Academy of Science, Engineering and Technology, pp 136–139

  22. Shen H, Chen B (2012) From single watermark to dual watermark: a new approach for image watermarking. Comput Electr Eng 38:1310–1324. doi:10.1016/j.compeleceng. 2011.11.012

    Article  Google Scholar 

  23. Singh C, Ranade SK (2013) Geometrically invariant and high capacity image watermarking scheme using accurate radial transform. Opt Laser Technol 54(12):176–184. doi:10.1016/j.optlastec.2013.05.016

    Article  Google Scholar 

  24. Song CL, Sudirman S, Merabti M (2012) A robust region-adaptive dual image watermarking technique. J Vis Commun Image Represent 23(3):549–568. doi:10.1016/ j.jvcir.2012.01.017

    Article  Google Scholar 

  25. Su QT, Niu YG, Liu XX et al (2012) A blind dual color images watermarking based on IWT and state coding. Opt Commun 285(7):1717–1724. doi:10.1016/j.optcom.2011.11.117

    Article  Google Scholar 

  26. Su Q, Niu Y, Zou H (2013) A blind dual color images watermarking based on singular value decomposition. Appl Math Comput 219(16):8455–8466. doi:10.1016/j.amc.2013.03.013

    Article  MathSciNet  MATH  Google Scholar 

  27. Tong X, Liu Y, Zhang M (2013) A novel chaos-based fragile watermarking for image tampering detection and self-recovery. Signal Process Image Commun 28(3):301–308. doi:10.1016/j.image.2012.12.003

    Article  Google Scholar 

  28. Ullah R, Khan A, Malik AS (2013) Dual-purpose semi-fragile watermark: authentication and recovery of digital images. Comput Electr Eng 39(7):2019–2030. doi:10.1016/ j.compeleceng.2013.04.024

    Article  Google Scholar 

  29. Wang XK, Wang PJ, Zhang P, Xu SZ, Yang HZ (2013) A norm-space, adaptive, and blind audio watermarking algorithm by discrete wavelet transform. Signal Process 93(4):913–922. doi:10.1016/j.sigpro.2012.11.003

    Article  Google Scholar 

  30. Wang X, Wang C, Yang H (2013) A robust blind color image watermarking in quaternion Fourier transform domain. J Syst Softw 86(2):255–277. doi:10.1016/j.jss.2012.08.015

    Article  Google Scholar 

  31. Wu K, Yan W, Du J (2007) A robust dual digital-image watermarking technique. In: IEEE International Conference on Computational Intelligence and Security Workshops, pp 668–671

  32. Xiao D, Shih FY (2012) An improved hierarchical fragile watermarking scheme using chaotic sequence sorting and subblock post-processing. Opt Commun 285(10):2596–2606. doi:10.1016/j.optcom.2012.02.002

    Article  Google Scholar 

  33. Xie G, Shen H (2005) Toward improved wavelet-based watermarking using the pixel-wise masking model. In: IEEE International Conference on Image Processing, pp 689–692. doi:10.1109/ICIP.2005.1529844

  34. Yang H, Wang X, Wang C (2013) A robust digital watermarking algorithm in undecimated discrete wavelet transform domain. Comput Electr Eng 39(3):893–906. doi:10.1016/j.compeleceng.2012.07.009

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Wang Zhihui for her useful suggestions and careful corrections to the manuscript. This research activity was supported by the Fundamental Research Funds for the Central Universities under grants DUT12RC(3)80, the Nature Science of Foundation of China under No.: 61272173 and the Nature Science Foundation of Liaoning under No.: 201102038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Guo.

Additional information

This work was supported by the Fundamental Research Funds for the Central Universities under grants DUT12RC(3)80, the Nature Science of Foundation of China under No.: 61272173 and the Nature Science Foundation of Liaoning under No.: 201102038.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Li, Mc., Guo, C. et al. A region-adaptive semi-fragile dual watermarking scheme. Multimed Tools Appl 75, 465–495 (2016). https://doi.org/10.1007/s11042-014-2301-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2301-y

Keywords

Navigation