Abstract
Aerial surveillance system provides a large amount of data compared with traditional surveillance system. But, it usually suffers from undesired motion of cameras, which presents new challenges. These challenges must be overcome before such video can be widely used. In this paper, we present a novel video stabilization and moving object detection system based on camera motion estimation. We use local feature extraction and matching to estimate global motion and we demonstrate that Scale Invariant Feature Transform (SIFT) keypoints are suitable for the stabilization task. After estimating the global camera motion parameters using affine transformation, we detect moving object by Kalman filtering. For motion smoothing, we use a median filter to retain the desired motion. Finally, motion compensation is carried out to obtain a stabilized video sequence. A number of aerial video examples demonstrate the effectiveness of our proposed system. We use the software Virtual Dub with the Deshaker-Plugin for test purposes. For objective evaluation, we use Interframe Transformation Fidelity for video stabilization tasks and Detection Ratio for moving object detection task.














Similar content being viewed by others
References
Ali S, Shah M (2006) Cocoa: tracking in aerial imagery pp 62,090D–62,090D–6. doi:10.1117/12.667266
Battiato S, Gallo G, Puglisi G, Scellato S, Catania SSD Sift features tracking for video stabilization
Bay H, Tuytelaars T, Gool LV (2006) Surf: speeded up robust features. In: ECCV. pp 404–417
Calonder M, Lepetit V, Strecha C, Fua P (2010) Brief: binary robust independent elementary features. In: Computer vision ECCV 2010. Lecture notes in computer science, vol 6314. Springer, Berlin Heidelberg, pp 778–792
Censi A, Fusiello A, Roberto V (1999) Image stabilization by features tracking. In: Proceedings international conference on image analysis and processing, pp 665–667. doi:10.1109/ICIAP.1999.797671
Clark D, Vo BN, Bell J (2006) GM-PHD filter multitarget tracking in sonar images. In: Society of photo-optical instrumentation engineers (SPIE) conference series, society of photo-optical instrumentation engineers (SPIE) conference series, vol 6235. doi:10.1117/12.663522
Cuntoor N, Basharat A, Perera A, Hoogs A (2010) Track initialization in low frame rate and low resolution videos. In: 2010 20th international conference on pattern recognition (ICPR). pp 3640–3644. doi:10.1109/ICPR.2010.888
Daum F (1996) Multitarget-multisensor tracking: principles and techniques [book review]. IEEE Aerosp Electron Syst Mag 11(2):41. doi:10.1109/MAES.1996.484305
Erturk S (2001) Image sequence stabilisation: motion vector integration (mvi) versus frame position smoothing (fps). In: Proceedings of the 2nd international symposium on image and signal processing and analysis, ISPA 2001. pp 266–271. doi:10.1109/ISPA.2001.938639
Erturk S (2003) Digital image stabilization with sub-image phase correlation based global motion estimation. IEEE Trans Consum Electron 49(4):1320–1325. doi:10.1109/TCE.2003.1261235
Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395. doi:10.1145/358669.358692
Freudenberg J, Middleton R, Braslavsky J (2007) Stabilization with disturbance attenuation over a Gaussian channel. In: 2007 46th IEEE conference on decision and control. pp 3958–3963. doi:10.1109/CDC.2007.4434535
Huang CH, Wu YT, Kao JH, Shih MY, Chou CC (2010) A hybrid moving object detection method for aerial images, vol 1, pp 357–368
Lin CC, Wolf M (2010) Detecting moving objects using a camera on a moving platform. In: 2010 20th international conference on pattern recognition (ICPR). pp 460–463. doi:10.1109/ICPR.2010.121
Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110
Miller A, Babenko P, Hu M, Shah M (2008) Multimodal technologies for perception of humans. Springer-Verlag, Berlin, Heidelberg, pp 215–220
Rotation invariant fast features for large-scale recognition, vol 8499 (2012). doi:10.1117/12.945968
Roujol S, de Senneville BD, Hey S, Moonen CTW, Ries M (2012) Robust adaptive extended Kalman filtering for real time mr-thermometry guided hifu interventions. IEEE Trans Med Imaging 31(3):533–542
Rublee E, Rabaud V, Konolige K, Bradski G (2011) Orb: an efficient alternative to sift or surf. In: 2011 IEEE international conference on computer vision (ICCV). pp 2564–2571. doi:10.1109/ICCV.2011.6126544
Rudol P, Doherty P (2008) Human body detection and geolocalization for uav search and rescue missions using color and thermal imagery. In: Aerospace conference, 2008 IEEE. pp 1–8. doi:10.1109/AERO.2008.4526559
Shen Y, Guturu P, Damarla T, Buckles B, Namuduri K (2009) Video stabilization using principal component analysis and scale invariant feature transform in particle filter framework. IEEE Trans Consum Electron 55(3):1714–1721. doi:10.1109/TCE.2009.5278047
Teutsch M, Kruger W (2012) Detection, segmentation, and tracking of moving objects in uav videos. In: 2012 IEEE 9th international conference on advanced video and signal-based surveillance (AVSS). pp 313–318. doi:10.1109/AVSS.2012.36
Walha A, Wali A, Alimi AM (2013) Moving object detection system in aerial video surveillance. In: Advanced concepts for intelligent vision systems. Springer International Publishing, pp 310–320
Walha A, Wali A, Alimi AM (2013) Video stabilization for aerial video surveillance. AASRI Procedia 4:72–77
Wali A, Alimi A (2010) Incremental learning approach for events detection from large video dataset. In: 2010 7th IEEE international conference on advanced video and signal based surveillance (AVSS). pp 555–560. doi:10.1109/AVSS.2010.54
Wang Y, Zhang Z, Wang Y (2012) Moving object detection in aerial video. In: 2012 11th international conference on machine learning and applications (ICMLA), vol 2. pp 446–450. doi:10.1109/ICMLA.2012.206
Xu L, Lin X (2006) Digital image stabilization based on circular block matching. IEEE Trans Consum Electron 52(2):566–574. doi:10.1109/TCE.2006.1649681
Yalcin H, Black MJ, Collins R, Hebert M (2005) A flow-based approach to vehicle detection and background mosaicking in airborne video
Yang J, Schonfeld D, Mohamed M (2009) Robust video stabilization based on particle filter tracking of projected camera motion. IEEE Trans Circ Syst Video Tech 19(7):945–954. doi:10.1109/TCSVT.2009.2020252
Yang SH, Jheng FM (2006) An adaptive image stabilization technique. In: IEEE International conference on systems, man and cybernetics, 2006. SMC ’06, vol 3. pp 1968–1973. doi:10.1109/ICSMC.2006.385019
Yang Y, Liu F, Wang P, Luo P, Liu X (2012) Vehicle detection methods from an unmanned aerial vehicle platform. In: 2012 IEEE international conference on vehicular electronics and safety (ICVES). pp 411–415. doi:10.1109/ICVES.2012.6294294
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Walha, A., Wali, A. & Alimi, A.M. Video stabilization with moving object detecting and tracking for aerial video surveillance. Multimed Tools Appl 74, 6745–6767 (2015). https://doi.org/10.1007/s11042-014-1928-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-014-1928-z