A novel secure block data-hiding algorithm using cellular automata to enhance the performance of JPEG steganography | Multimedia Tools and Applications
Skip to main content

A novel secure block data-hiding algorithm using cellular automata to enhance the performance of JPEG steganography

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The computational complexity of matrix embedding (ME)-based steganography is high due to the use of the Hamming parity check matrix and matrix multiplication. Furthermore, with only one embedding change solution, ME cannot minimize embedding distortions when applied to joint photographic experts group (JPEG) steganography. In this paper, we propose a novel block data-hiding (BDH) algorithm to improve the performance of JPEG steganography. BDH allows a byte of data to be hidden in a binary block by modifying a maximum of two bits of the binary block must be changed. Moreover, BDH can be applied to the new channel selection rule for JPEG steganography with more available embedding solutions and less computational complexity than modified matrix embedding (MME). In addition, to increase the security of hidden data against extraction attacks, the secret message is encrypted by a cipher based on cellular automata (CA). The bitwise XOR operator is employed in the encryption process to maintain speed and security when a non-repeating key stream is used. The experimental results indicate that the proposed approach has a high anti-detection property against ensemble classifiers (universal steganalyzers), high security against recovery attacks, and good perceptual quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adamatzky A (2010) Game of life cellular automata. Springer, London. doi:10.1007/978-1-84996-217-9

    Book  MATH  Google Scholar 

  2. Bandyopadhyay SK, Datta B (2011) Higher LSB layer based audio steganography technique. Int J Electron Commun Technol 2(4):129–135

    Google Scholar 

  3. Bridge S (2012) Chaos based encryption. codeproject. http://www.codeproject.com/Articles/311809/Chaos-Based-Encryption

  4. Brown RG (2004) Dieharder a random number test suite. http://www.phy.duke.edu/~rgb/General/dieharder.php

  5. Chao W, Weiming Z, Jiufen L, Nenghai Y (2012) Fast matrix embedding by matrix extending. IEEE Trans Inf Forensic Secur 7(1):346–350. doi:10.1109/tifs.2011.2164907

    Article  Google Scholar 

  6. Chunhua C, Shi YQ JPEG image steganalysis utilizing both intrablock and interblock correlations. In: Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on, 18–21 May 2008. pp 3029–3032. doi:10.1109/iscas.2008.4542096

  7. Crandall R (1998) Some notes on steganography. http://www.dia.unisa.it/~ads/corso-security/www/CORSO-0203/steganografia/LINKS%20LOCALI/matrix-encoding.pdf

  8. Cvejic N, Seppänen T (2005) Increasing robustness of LSB audio steganography by reduced distortion LSB coding. J Univ Comput Sci 11(1):56–65. doi:10.3217/jucs-011-01-0056

    Google Scholar 

  9. Fangjun H, Jiwu H, Yun-Qing S (2012) New channel selection rule for JPEG steganography. IEEE Trans Inf Forensic Secur 7(4):1181–1191. doi:10.1109/tifs.2012.2198213

    Article  Google Scholar 

  10. Fridrich J, Goljan M, Soukal D Perturbed Quantization Steganography with Wet Paper Codes. In: ACM Multimedia and Security Workshop, Magdeburg, Germany, 2004. ACM New York, NY, USA, pp 4–15. doi:10.1145/1022431.1022435

  11. Fridrich J, Tomás, Pevný, Kodovský J (2007) Statistically undetectable jpeg steganography: dead ends challenges, and opportunities. Paper presented at the Proceedings of the 9th workshop on Multimedia & security, Dallas, Texas, USA

  12. Kim Y, Duric Z, Richards D (2007) Modified matrix encoding technique for minimal distortion steganography. In: Camenisch J, Collberg C, Johnson N, Sallee P (eds) Information hiding, vol 4437. Lecture notes in computer science. Springer Berlin, Heidelberg, pp 314–327. doi:10.1007/978-3-540-74124-4_21

  13. Kodovský J, Fridrich J (2009) Calibration revisited. Paper presented at the Proceedings of the 11th ACM workshop on Multimedia and security, Princeton, New Jersey, USA

  14. Kodovsky J, Fridrich J, Holub V (2012) Ensemble classifiers for steganalysis of digital media. IEEE Trans Inf Forensic Secur 7(2):432–444. doi:10.1109/tifs.2011.2175919

    Article  Google Scholar 

  15. Langelaar GC, Setyawan I, Lagendijk RL (2000) Watermarking digital image and video data. A state-of-the-art overview. IEEE Signal Proc Mag 17(5):20–46. doi:10.1109/79.879337

    Article  Google Scholar 

  16. Luo W, Huang F, Huang J (2011) A more secure steganography based on adaptive pixel-value differencing scheme. Multimed Tools Appl 52(2–3):407–430. doi:10.1007/s11042-009-0440-3

    Article  Google Scholar 

  17. Mazurczyk W, Szaga P, Szczypiorski K (2012) Using transcoding for hidden communication in IP telephony. Multimed Tools Appl:1–27. doi:10.1007/s11042-012-1224-8

  18. Never-compressed image database (2011) Sam Houston State University. http://www.shsu.edu/~qxl005/New/Downloads/index.html

  19. Omoomi M, Samavi S, Dumitrescu S (2011) An efficient high payload ±1 data embedding scheme. Multimed Tools Appl 54(2):201–218. doi:10.1007/s11042-010-0517-z

    Article  Google Scholar 

  20. Pevny T, Fridrich J Merging Markov and DCT Features for Multi-Class JPEG Steganalysis. In: Delp EJ, Wong PW (eds) Proceedings SPIE, Electronic Imaging, Security, Steganography and Watermarking of Multimedia Contents IX, San Jose, CA, 2007. pp 301–314

  21. Qazanfari K, Safabakhsh R (2013) High-capacity method for hiding data in the discrete cosine transform domain. ELECTIM 22(4):043009–043009. doi:10.1117/1.jei.22.4.043009

    Google Scholar 

  22. Sallee P (2004) Model-based steganography. In: Kalker T, Cox I, Ro Y (eds) Digital watermarking, vol 2939. Lecture notes in computer science. Springer, Berlin, pp 154–167. doi:10.1007/978-3-540-24624-4_12

    Google Scholar 

  23. Sarkar A, Madhow U, Manjunath BS (2010) Matrix embedding with pseudorandom coefficient selection and error correction for robust and secure steganography. IEEE Trans Inf Forensic Secur 5(2):225–239. doi:10.1109/tifs.2010.2046218

    Article  Google Scholar 

  24. Solanki K, Sarkar A, Manjunath BS (2007) YASS: yet another steganographic scheme that resists blind steganalysis. Paper presented at the Proceedings of the 9th international conference on Information hiding, Saint Malo, France

  25. Su P-C, Lu M-T, Wu C-Y (2013) A practical design of high-volume steganography in digital video files. Multimed Tools Appl 66(2):247–266. doi:10.1007/s11042-011-0799-9

    Article  Google Scholar 

  26. Westfeld A High capacity despite better steganalysis (F5-A steganographic algorithm). In: Moskowitz IS (ed) 4th International Workshop on Information Hiding, Pittsburgh, USA, 2001. Springer-Verlag, pp 289–302. doi:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.3651

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Duc Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T.D., Arch-int, S. & Arch-int, N. A novel secure block data-hiding algorithm using cellular automata to enhance the performance of JPEG steganography. Multimed Tools Appl 74, 5661–5682 (2015). https://doi.org/10.1007/s11042-014-1877-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-1877-6

Keywords