Joint User Association and Time Partitioning for Load Balancing in Ultra-Dense Heterogeneous Networks | Mobile Networks and Applications Skip to main content
Log in

Joint User Association and Time Partitioning for Load Balancing in Ultra-Dense Heterogeneous Networks

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Ultra-dense heterogeneous networks (UDHNs) have been widely regarded as a promising solution to enhance the reuse efficiency of spatial frequency and thus improve the overall network performance. In such networks, a load balancing problem caused by coexisting macrocells and small cells should be treated seriously, which means some effective user associations are essential for load balancing. To this end, we design two types of offloading (load balancing) schemes for UDHNs to maximize a logarithmic utility of long-term rates. To guarantee the load balancing gain, a frequency partitioning scheme is designed to degrade the cross-plane interference, and a time partitioning strategy is developed to eliminate the strong interference received by some users offloaded from macrocells. In these offloading schemes, the main difference between them is whether a time partitioning factor needs to be optimized. As for the problems formulated in these schemes, we design a distributed algorithm by utilizing dual decomposition and develop a centralized algorithm with a two-layer iteration. Then, we give some detailed convergence and complexity analyses for them. Numerical results show that the proposed schemes yield some significant performance gains relative to some traditional ones, and the centralized algorithm often achieves a better association performance than a distributed one since the former almost always tries to optimize a time partitioning factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lpez-Prez DD, Claussen H, et al (2015) Towards 1 gbps/UE in cellular systems: understanding ultra-dense small cell deployments. IEEE Commun Surv Tut 17(4):2078–2101

    Article  Google Scholar 

  2. Galinina O, Pyattaev A, Andreev S et al (2015) 5G multi-RAT LTE-WiFi ultra-dense small cells: performance dynamics, architecture, and trends. IEEE J Sel Areas Commun 33(6):1224–1240

    Article  Google Scholar 

  3. Koudouridis G, Soldati P (2017) Spectrum and network density management in 5G ultra-dense networks. IEEE Wireless Commun 24(5):30–37

    Article  Google Scholar 

  4. Zheng J, Wu Y, Zhang N, et al (2017) Optimal power control in ultra-dense small cell networks: a game-theoretic approach. IEEE Trans Wireless Commun 16(7):4139–4150

    Article  Google Scholar 

  5. Yunas S, Valkama M, Niemel J (2015) Spectral and energy efficiency of ultra-dense networks under different deployment strategies. IEEE Commun Mag 53(1):90–100

    Article  Google Scholar 

  6. Kamel M, Hamouda W, Youssef A (2017) Performance analysis of multiple association in ultra-dense networks. IEEE Trans Commun 65(9):3818–3831

    Article  Google Scholar 

  7. Chen S, Zhao T, Chen H, et al (2017) Performance analysis of downlink coordinated multipoint joint transmission in ultra-dense networks. IEEE Netw 31(5):106–114

    Article  MathSciNet  Google Scholar 

  8. Agyapong P, Iwamura M, Staehle D, et al (2014) Design considerations for a 5G network architecture. IEEE Commun Mag 52(11):65–75

    Article  Google Scholar 

  9. Ge X, Tu S, Mao G et al (2016) 5G ultra-dense cellular networks. IEEE Wireless Commun 23(1):72–79

    Article  Google Scholar 

  10. Du J, Gelenbe E, Jiang C, et al (2017) Contract design for traffic offloading and resource allocation in heterogeneous ultra-dense networks. IEEE J Sel Areas Commun 35(11):2457– 2467

    Article  Google Scholar 

  11. Zhou T, Liu Z, Zhao J, et al (2017) Joint user association and power control for load balancing in downlink heterogeneous cellular networks. IEEE Trans Veh Technol 67(3):2582– 2593

    Article  Google Scholar 

  12. Zhou T, Liu Z, Qin D, et al (2017) User association with maximizing weighted sum energy efficiency for massive MIMO-enabled heterogeneous cellular networks. IEEE Commun Lett 21(10):2250–2253

    Article  Google Scholar 

  13. Andrews J, Singh S, Ye Q, et al (2014) An overview of load balancing in HetNets: old myths and open problems. IEEE Wireless Commun 21(2):18–25

    Article  Google Scholar 

  14. Liu D, Wang L, Chen Y, et al (2016) User association in 5G networks: a survey and an outlook. IEEE Commun Surv Tut 18(2):1018–1044

    Article  Google Scholar 

  15. Khandekar A, Bhushan N, Tingfang J, et al (2010) LTE-Advanced: heterogeneous networks. European Wireless Conference (EW), Lucca Italy, pp 978–982

  16. Jo H, Sang Y, Xia P, et al (2012) Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Trans Wireless Commun 11(10):3484–3495

    Article  Google Scholar 

  17. Yu G, Zhang Z, Qu F, et al (2017) Ultra-dense heterogeneous networks with full-duplex small cell base stations. IEEE Netw 31(6):108–114

    Article  Google Scholar 

  18. Zhang T, Zhao J, An L, et al (2016) Energy efficiency of base station deployment in ultra dense HetNets: a stochastic geometry analysis. IEEE Wireless Commun Lett 5(2):184–187

    Article  Google Scholar 

  19. Ye Q, Rong B, Chen Y, et al (2013) User association for load balancing in heterogeneous cellular networks. IEEE Trans Wireless Commun 12(6):2706–2716

    Article  Google Scholar 

  20. Shen K, Yu W (2014) Distributed pricing-based user association for downlink heterogeneous cellular networks. IEEE J Sel Areas Commun 32(6):1100–1113

    Article  Google Scholar 

  21. Chen Y, Li J, Lin Z, et al (2016) User association with unequal user priorities in heterogeneous cellular networks. IEEE Trans Veh Technol 65(9):7374–7388

    Article  Google Scholar 

  22. Son K, Kim H, Yi Y, et al (2011) Base station operation and user association mechanisms for energy-delay tradeoffs in green cellular networks. IEEE J Sel Areas Commun 29(8):1525– 1536

    Article  Google Scholar 

  23. Moon S, Kim H, Yi Y (2016) Brute: energy-efficient user association in cellular networks from population game perspective. IEEE Trans Wireless Commun 15(1):663–675

    Article  Google Scholar 

  24. Cho S, Choi W (2013) Energy-efficient repulsive cell activation for heterogeneous cellular networks. IEEE J Sel Areas Commun 31(5):870–882

    Article  Google Scholar 

  25. Du B, Pan C, Zhang W, et al (2014) Distributed energy-efficient power optimization for coMP systems with max-min fairness. IEEE Commun Lett 18(6):999–1002

    Article  Google Scholar 

  26. Luo S, Zhang R, Lim T (2015) Downlink and uplink energy minimization through user association and beamforming in c-RAN. IEEE Trans Wireless Commun 14(1):494– 508

    Article  Google Scholar 

  27. Singh S, Andrews J (2014) Joint resource partitioning and offloading in heterogeneous cellular networks. IEEE Trans Wireless Commun 13(2):888–901

    Article  Google Scholar 

  28. Sun Y, Li S, Yang L (2018) Green fronthaul allocation and power management in cloud-RAN. Eurasip J Wireless Commun Netw 2018(1):1–18

    Article  Google Scholar 

  29. Zhou T, Huang Y, Yang L (2015) Joint user association and interference mitigation for D2D-enabled heterogeneous cellular networks. Mobile Netw Appl 21(4):1–14

    Google Scholar 

  30. Han T, Mao G, Li Q, et al (2015) Interference minimization in 5G heterogeneous networks. Mobile Netw Appl 20(6):756– 762

    Article  Google Scholar 

  31. Wang B, Kong Q, Yang L (2015) Context-aware user association for energy cost saving in a green heterogeneous network with hybrid energy supplies. Mobile Netw Appl 2015

  32. Tang W, Zhang R, Liu Y (2014) Joint resource allocation for eICIC in heterogeneous networks. IEEE GLOBECOM: 2011–2016

  33. Deb S, Monogioudis P, Miernik J (2014) Algorithms for enhanced inter-cell interference coordination (eICIC) in LTE HetNets. IEEE/ACM Trans Netw 22(1):137–150

    Article  Google Scholar 

  34. Liu C, Li M, Hanly S (2017) Joint downlink user association and interference management in two-tier HetNets with dynamic resource partitioning. IEEE Trans Veh Technol 66(2):1365– 1378

    Article  Google Scholar 

  35. Zhou T, Huang Y, Yang L (2016) Energy-efficient user association in downlink heterogeneous cellular networks. IET Commun 10(13):1553–1561

    Article  Google Scholar 

  36. Liu Y, Fang X (2016) Joint user association and resource allocation for self-backhaul ultra-dense networks. China Commun 13(2):1–10

    Article  MathSciNet  Google Scholar 

  37. Gotsis A, Stefanatos S, Alexiou A (2015) Optimal user association for massive MIMO empowered ultra-dense wireless networks. In: Proc IEEE ICCW, London UK, pp 2238– 2244

  38. Bottai C, Cicconetti C, Morelli A, et al (2014) Energy-efficient user association in extremely dense small cell networks. In: Proc euCNC, Bologna Italy, 2014, pp 1–5

  39. Xiao L, Johansson M, Boyd S (2004) Simultaneous routing and resource allocation via dual decomposition. IEEE Trans Commun 52(7):1136–1144

    Article  Google Scholar 

  40. Boyd S, Xiao L, Mutapcic A (2003) Subgradient methods. Online: https://web.stanford.edu/class/ee392o/subgrad_method.pdf, Accessed Oct 2003

  41. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  42. Fooladivanda D, Rosenberg C (2013) Joint resource allocation and user association for heterogeneous wireless cellular networks. IEEE Trans Wireless Commun 12(1):248– 257

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China under Grant Nos. 61861017, 61861018, 61862025, 61761019, 61862024, 61761030, 61422105, 61671144, 61372101 and 61221002, Natural Science Foundation of Jiangxi Province of China under Grant Nos. 20181BAB211013 and 20181BAB211016, Foundation of Jiangxi Educational Committee of China under Grant No. GJJ170414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luxi Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Zhao, J., Qin, D. et al. Joint User Association and Time Partitioning for Load Balancing in Ultra-Dense Heterogeneous Networks. Mobile Netw Appl 26, 909–922 (2021). https://doi.org/10.1007/s11036-019-01351-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-019-01351-2

Keywords