Joint Atomic Norm Based Estimation of Sparse Time Dispersive SIMO Channels with Common Support in Pilot Aided OFDM Systems | Mobile Networks and Applications Skip to main content
Log in

Joint Atomic Norm Based Estimation of Sparse Time Dispersive SIMO Channels with Common Support in Pilot Aided OFDM Systems

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

We consider the problem of estimation of sparse time dispersive Single Input Multiple Output (SIMO) channels, using a single transmit and multiple receive antennas in pilot aided OFDM systems. The channels we consider are with a continuous time delays and sparse, and we assume a common support of the channel coefficients of the SIMO channels associated with different antennas, resulting from the same scatterer. To exploit these properties, we propose a new channel estimation algorithm based on the atomic norm minimization for the Multiple Measurement Vector (MMV) model. A joint estimation of the delays corresponding to the same scatterer is obtained using the combination of the atomic norm regularized minimization for the MMV model and the MUSIC method. Then, based on the availability of the channel correlation information, the path gains are estimated using the LS or the MMSE method. Additionally, we derive a theoretical estimate of the channel estimate Mean Square Error for the asymptotically increasing number of receive antennas. To evaluate the proposed algorithm, we compare its performance with other state of the art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holma H, Antti T (2004) WCDMA for UMTS: Radio Access for Third Generation Mobile Communications (3ed). Wiley, NY, USA

    Google Scholar 

  2. Sung Y, Lim Y, Tong L, Van der Veen AJ (2009) Signal processing advances for 3G WCDMA: From RAKE receivers to blind techniques. IEEE Commun Mag 47(1):48–54

    Article  Google Scholar 

  3. Dahlman E, Parkvall S, SkoldHolma J (2014) 4G: LTE/LTE-advanced for Mobile Broadband (2ed). Academic Press, Oxford, United Kingdom

    Google Scholar 

  4. Zhao Z, Cheng X, Wen M, Jiao B, Wang CX (2013) Channel Estimation Schemes for IEEE 802.11p Standard. IEEE Intell Trans Syst Mag 5(4):38–49

    Article  Google Scholar 

  5. Weng F, Yin C, Luo T (2010) Channel estimation for the downlink of 3GPP-LTE systems. In: 2Nd IEEE International conference on Network Infrastructure and Digital Content, vol 2010, Beijing, pp 1042–1046

  6. Simko M, Wu D, Mehlfuehrer C, Eilert J, Liu D (2011) Implementation aspects of channel estimation for 3GPP LTE terminals. In: Wireless Conference 2011 - Sustainable Wireless Technologies (European Wireless), 11th European, Vienna, Austria, pp 1– 5

  7. Ahmadi S (2009) An overview of next-generation mobile WiMAX technology. IEEE Commun Mag 47(6):84–98

    Article  Google Scholar 

  8. Perahia E (2008) IEEE 802.11N development: history, process, and technology. IEEE Commun Mag 46 (7):48–55

    Article  Google Scholar 

  9. Donoho LD (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  11. Berger RC, Wang Z, Huang J, Zhou S (2010) Application of compressive sensing to sparse channel estimation. IEEE Commun Mag 48(11):164–174

    Article  Google Scholar 

  12. Taubock G, Hlawatsch F, Eiwen D, Rauhut H (2010) Compressive estimation of doubly selective channels in multicarrier systems: Leakage effects and Sparsity-Enhancing processing. IEEE J Sel Top Sig Process 4 (2):255–271

    Article  Google Scholar 

  13. Cheng P, Chen Z, Rui Y, Guo YJ, Gui L, Tao M, Zhang QT (2013) Channel estimation for OFDM systems over doubly selective channels: a distributed compressive sensing based approach. IEEE Trans Comm 61(10):4173–4185

    Article  Google Scholar 

  14. Hu D, Wang X, He L (2013) A new sparse channel estimation and tracking method for Time-Varying OFDM systems. IEEE Tran Veh Tech 62(9):4848–4653

    Google Scholar 

  15. Qi C, Yue G, Wu L, Nallanathan A (2014) Pilot design for sparse channel estimation in OFDM-based cognitive radio systems. IEEE Trans Veh Tech 63(2):982–987

    Article  Google Scholar 

  16. Pejoski S, Kafedziski V (2015) Asymptotic capacity lower bound for an OFDM system with lasso compressed sensing channel estimation for Bernoulli-Gaussian channel. IEEE Commun Lett 19(3):379–382

    Article  Google Scholar 

  17. Candès E, Fernandez-Granda C (2014) Towards a Mathematical Theory of Super-resolution. Commun Pure Appl Math 67(6):906–956

    Article  MathSciNet  MATH  Google Scholar 

  18. Candès E, Fernandez-Granda C (2013) Super-Resolution from noisy data. J Fourier Anal Appl 19 (6):1229–1254

    Article  MathSciNet  MATH  Google Scholar 

  19. Tang G, Bhaskar BN, Shah P, Recht B (2013) Compressed sensing off the grid. IEEE Tran Inf Theory 59(11):7465–7490

    Article  MathSciNet  MATH  Google Scholar 

  20. Bhaskar BN, Tang G, Recht B (2013) Atomic norm denoising with applications to line spectral estimation. IEEE Trans Sig Process 61(23):5987–5999

    Article  MathSciNet  Google Scholar 

  21. Yang Z, Xie L (2015) On gridless sparse methods for line spectral estimation from complete and incomplete data. IEEE Trans Sig Process 63(12):3139–3153

    Article  MathSciNet  Google Scholar 

  22. Pejoski S, Kafedziski V (2015) Estimation of sparse time dispersive channels in pilot aided OFDM using atomic norm. IEEE Wirel Commun Lett 4(4):397–400

    Article  Google Scholar 

  23. Barbotin Y, Hormati A, Rangan S, Vetterli M (2012) Estimation of sparse MIMO channels with common support. IEEE Trans Commun 60(12):3705–3716

    Article  Google Scholar 

  24. Barbotin Y, Vetterli M (2012) Fast and robust parametric estimation of jointly sparse channels. IEEE J Emerg Sel Top Circ Syst 2(3):402–412

    Article  Google Scholar 

  25. Yang Z, Xie L (2014) Exact joint sparse frequency recovery via optimization methods. arXiv:1405.6585

  26. Li Y, Chi Y (2014) Off-the-grid line spectrum denoising and estimation with multiple measurement vectors. arXiv:1408.2242

  27. Pejoski S (2015) Estimation of sparse time dispersive SIMO channels with common support in pilot aided OFDM systems using atomic norm. In: 1st EAI International Conference on Future access enablers of ubiquitous and intelligent infrastructures FABULOUS, Ohrid

  28. Simeone O, Bar-Ness Y, Spagnolini U (2004) Pilot-Based Channel estimation for OFDM systems by tracking the Delay-Subspace. IEEE Trans Wirel Comm 3(1):315–325

    Article  Google Scholar 

  29. Barbotin Y (2014) Parametric estimation of sparse channels: Theory and applications. Dissertation, EPFL

  30. Grant M, Boyd S (2013) CVX: Matlab Software for Disciplined Convex Programming, version 2.0 beta, http://cvxr.com/cvx

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavche Pejoski.

Appendices

Appendix A

The value of μ X in Eq. 10 is obtained by estimating the expected dual atomic norm of the noise Z 1. Namely, in order to guarantee that the expected MSE of the estimate obtained by the atomic norm minimization is upperbounded, and that the solution of the atomic norm is asymptotically consistent (when P) in [20, 21, 26] it is proposed to use the expected dual atomic norm of the noise as an upper bound of μ X . Using the inequality (36) from [26], modified by the inequality (69) from [21], and applying the inequality below (43) in [26] we obtain an estimate of the expected dual atomic norm of the noise:

$$\begin{array}{@{}rcl@{}} \mathbb{E}[||\mathbf{Z}_{1}||_{\mathcal{A}}^{*}]\leq && \sqrt{\frac{{\sigma_{n}^{2}}}{2}}(1-\frac{2\pi\overline{P}N_{r}}{R})^{-1/2}(2N_{r}+2\ln R\\ && +2\sqrt{2N_{r}\ln R} +\sqrt{2\pi N_{r}}+2)^{1/2} \end{array} $$

where R is a value that should be optimized to obtain a tight estimate of the expected dual atomic norm. We set \(\phantom {\dot {i}\!}R = \rho 2\pi \overline {P}N_{r}\) where ρ>1 is the variable to be optimized, and, after the substitution, we obtain:

$$\begin{array}{@{}rcl@{}} \mathbb{E}[||\mathbf{Z}_{1}||_{\mathcal{A}}^{*}]&\leq& \sqrt{\frac{{\sigma_{n}^{2}}}{2}}(1-\frac{1}{\rho})^{-1/2} (2N_{r}+2\ln 2\pi\overline{P}N_{r}\\ &&+ 2\ln\rho+2\sqrt{2N_{r}}\sqrt{\ln 2\pi\overline{P}N_{r}+ \ln\rho}\\ &&+\sqrt{2\pi N_{r}}+2)^{1/2} \end{array} $$
(17)

Using the substitutions \(\phantom {\dot {i}\!}a = 2N_{r} +2\ln 2\pi \overline {P}N_{r}+2\sqrt {\frac {\pi N_{r}}{2}}+2\), \(\phantom {\dot {i}\!}b=2\sqrt {2 N_{r}}\) and \(\phantom {\dot {i}\!}c = \ln 2\pi \overline {P}N_{r}\), we further obtain:

$$\begin{array}{@{}rcl@{}} &&\mathbb{E}[||\mathbf{Z}_{1}||_{\mathcal{A}}^{*}]\leq\\ &&\ \ \ \sqrt{\frac{{\sigma_{n}^{2}}}{2}}(1-\frac{1}{\rho})^{-1/2} (a + 2\ln\rho +b\sqrt{c + \ln\rho})^{1/2} \end{array} $$
(18)

Since the right-hand side of Eq. 18 is always positive, we minimize its square by finding its derivative with respect to ρ and setting it to zero, resulting in:

$$\begin{array}{@{}rcl@{}} \rho = && \frac{1}{2\sqrt{c+\ln\rho}}((a+2)\sqrt{c+\ln\rho}\\ &&+b(c+\ln\rho)+\frac{b}{2}+2\sqrt{c+\ln\rho}\ln\rho-\frac{b\rho}{2}) \end{array} $$
(19)

For values of the parameters that correspond to real communication systems, and assuming ρ>1, the function on the right-hand side of Eq. 19 has a maximum in ρ = ρ m ( ρ m ≈1), with a value much greater than ρ m , and it is a strictly monotone decreasing function when ρ>ρ m . Thus, there is a single solution of Eq. 19 in terms of ρ in the range of interest of ρ. The derivative of the right-hand side of Eq. 19 is:

$$\begin{array}{@{}rcl@{}} &&\frac{1}{2\rho(\sqrt{c+\ln\rho})^{3}}(b(c+\ln\rho)+\frac{b\rho}{2}\\ &&+4(c+\ln\rho)\sqrt{c+\ln\rho}-\frac{b}{2}-b\rho(c+\ln\rho)) \end{array} $$
(20)

For the right-hand side of Eq. 19 to be strictly monotone decreasing, it needs to have a negative derivative:

$$ b(c+\ln\rho)+\frac{b\rho}{2}+4(c+\ln\rho)\sqrt{c+\ln\rho}-\frac{b}{2}<b\rho(c+\ln\rho) $$
(21)

Neglecting the last term in the left-hand side of Eq. 21 and dividing (21) by c+ lnρ, we obtain:

$$ b+\frac{b\rho}{2(c+\ln\rho)}+4\sqrt{c+\ln\rho}<b\rho $$
(22)

Using the fact that \(\phantom {\dot {i}\!}\frac {1}{c+\ln \rho }<\frac {1}{c}\) and \(\phantom {\dot {i}\!}\sqrt {c+\ln \rho }<\sqrt {c+\rho }<\sqrt {c}+\sqrt {\rho }\) we obtain:

$$ \frac{b+4\sqrt{c}}{b(1-\frac{1}{2c})}+\frac{4}{b(1-\frac{1}{2c})}\sqrt{\rho}<\rho $$
(23)

From Eq. 23 for

$$\begin{array}{@{}rcl@{}} \rho > &&\frac{b+4\sqrt{c}}{b(1-\frac{1}{2c})}+\frac{8}{(b(1-\frac{1}{2c}))^{2}}\\ &&+\frac{2}{b(1-\frac{1}{2c})}\sqrt{(\frac{4}{b(1-\frac{1}{2c})})^{2}+4\frac{b+4\sqrt{c}}{b(1-\frac{1}{2c})}} \end{array} $$
(24)

the right-hand side of Eq. 19 is a monotone decreasing function. Thus, using a starting value of ρ satisfying (24), any gradient based optimization algorithm will find the solution of Eq. 19. After finding the optimal value of ρ, it is substituted in the right-hand side of Eq. 17 to obtain a tight estimate of μ X .

Appendix B

Here we show the derivation of the MSE estimate (14). Assuming that Δτ r,i T s , and that \(\phantom {\dot {i}\!}\hat {\tau }_{i}\)’s are sufficiently close to the τ i ’s we can approximate D r using its first order approximation as \(\phantom {\dot {i}\!}\mathbf {D}_{r} = \hat {\mathbf {D}}_{r}+\mathbf {G}\hat {\mathbf {D}}_{r} \mathbf {\Delta f}_{r}\) where G is a diagonal matrix with nonzero elements \(\phantom {\dot {i}\!}[\mathbf {G}]_{i,i} = -j\frac {2\pi }{L}n_{i}^{,}\) and # #Δ# # f r is a diagonal matrix with nonzero elements \(\phantom {\dot {i}\!}[\mathbf {\Delta f}_{r}]_{i,i} = \frac {\Delta \hat {\tau }_{r,i}}{T_{s}}=\frac {\tau _{r,i}-\hat {\tau }_{i}}{T_{s}}\). Using matrix notation, Eq. 3 can be rewritten as:

$$ \mathbf{H}_{r} =\mathbf{A}_{r}\mathbf{h}_{I,r} \ r = 1,...,N_{r} $$
(25)

where \(\phantom {\dot {i}\!}[\mathbf {A}_{r}]_{n,i}= e^{-j2\pi \frac {\tau _{r,i}}{NT_{s}}n}\), i=0,...,I−1, n=0,...,N−1. Using the first order approximation of A r we can write:

$$ \mathbf{A}_{r} = \hat{\mathbf{A}}_{r}+\mathbf{G}_{g}\hat{\mathbf{A}}_{r}\mathbf{\Delta f}_{r} $$
(26)

where \(\phantom {\dot {i}\!}[\hat {\mathbf {A}}_{r}]_{n,i}=e^{-j2\pi \frac {\hat {\tau }_{i}}{NT_{s}}n}\) and G g is a diagonal matrix with nonzero elements \(\phantom {\dot {i}\!}[\mathbf {G}_{g}]_{i,i} = -j\frac {2\pi }{N}i\). Using the approximations introduced above, we can rewrite \(\phantom {\dot {i}\!}{\Delta }\mathbf {H}_{r}=\mathbf {H}_{r}-\hat {\mathbf {H}}_{r}\) as:

$$\begin{array}{@{}rcl@{}} {\Delta}\mathbf{H}_{r} = && \mathbf{G}_{g}\hat{\mathbf{A}}_{r}\mathbf{\Delta f}_{r}\mathbf{h}_{I,r} - \hat{\mathbf{A}}_{r}(\hat{\mathbf{D}}_{r}^{H}\hat{\mathbf{D}}_{r})^{-1}\hat{\mathbf{D}}_{r}^{H} \mathbf{G}\hat{\mathbf{D}}_{r} \mathbf{\Delta f}_{r}\mathbf{h}_{I,r}\\ && -\hat{\mathbf{A}}_{r}(\hat{\mathbf{D}}_{r}^{H}\hat{\mathbf{D}}_{r})^{-1}\hat{\mathbf{D}}_{r}^{H}\mathbf{Z}_{1_{r}} \end{array} $$
(27)

where represents the measurement noise i.e. \(\phantom {\dot {i}\!}\mathbf {Z}_{1_{r}} = \) \(\phantom {\dot {i}\!}[Z_{1_{r}}(n_{0}^{,}\frac {N}{L}),\) \(\phantom {\dot {i}\!} \ldots , Z_{1_{r}}(n_{P-1}^{,}\frac {N}{L})]^{T}\).

Using the assumption that h r,i ’s are asymptotically i.i.d. (when N r ), which allows for the independence of the entries in # #Δ# # f r and h I,r , and averaging over the noise, # #Δ# # f r and h I,r , the total mean square channel estimation error per antenna is:

$$\begin{array}{@{}rcl@{}} &&\mathbb{E}_{\mathbf{Z}_{1_{r}},\mathbf{\Delta f}_{r},\mathbf{h}_{i,r}}[{\Delta}\mathbf{H}_{r}^{H}{\Delta}\mathbf{H}_{r}] = \\ &&{\sigma_{h}^{2}}\sigma_{\frac{\Delta\tau}{T_{s}}}^{2}[\text{trace}(\mathbf{G}_{g}\hat{\mathbf{A}}_{r}\hat{\mathbf{A}}_{r}^{H}\mathbf{G}_{g}^{H}) \\ &&- \text{trace}(\mathbf{G}_{g}\hat{\mathbf{A}}_{r}\hat{\mathbf{D}}_{r}^{H}\mathbf{G}^{H}\hat{\mathbf{D}}_{r}\left( (\hat{\mathbf{D}}_{r}^{H}\hat{\mathbf{D}}_{r})^{-1}\right)^{H}\hat{\mathbf{A}}_{r}^{H})\\ &&- \text{trace}(\hat{\mathbf{A}}_{r}(\hat{\mathbf{D}}_{r}^{H}\hat{\mathbf{D}}_{r})^{-1}\hat{\mathbf{D}}_{r}^{H}\mathbf{G}\hat{\mathbf{D}}_{r}\hat{\mathbf{A}}_{r}^{H} \mathbf{G}_{g}^{H})\\ &&+\text{trace}\left( \hat{\mathbf{A}}_{r}(\hat{\mathbf{D}}_{r}^{H}\hat{\mathbf{D}}_{r})^{-1}\hat{\mathbf{D}}_{r}^{H}\mathbf{G}\hat{\mathbf{D}}_{r}\right.\\ &&\hspace*{3pc}\left.\hat{\mathbf{D}}_{r}^{H}\mathbf{G}^{H}\hat{\mathbf{D}}_{r}\left( (\hat{\mathbf{D}}_{r}^{H}\hat{\mathbf{D}}_{r})^{-1}\right)^{H}\hat{\mathbf{A}}_{r}^{H})\right)\\ &&+{\sigma_{n}^{2}}\text{trace}(\hat{\mathbf{A}}_{r}(\hat{\mathbf{D}}_{r}^{H}\hat{\mathbf{D}}_{r})^{-1}\hat{\mathbf{A}}_{r}^{H}) \end{array} $$
(28)

where \(\phantom {\dot {i}\!}\mathbb {E}[\mathbf {\Delta f}_{r}\mathbf {\Delta f}_{r}^{H}] = \sigma _{\frac {\Delta \tau }{T_{s}}}^{2}\mathbf {I}\). When I=1, averaging over all the possible combinations of the \(\phantom {\dot {i}\!}n^{,}_{p}\)’s, the expressions in Eq. 28 can be calculated as:

$$\begin{array}{@{}rcl@{}} \mathbb{E}_{n_{p}^{,}}\left[\text{trace}(\mathbf{G}_{g}\hat{\mathbf{A}}_{r}\hat{\mathbf{A}}_{r}^{H}\mathbf{G}_{g}^{H})\right] &=&\frac{4\pi^{2}}{N^{2}}\sum\limits_{n=1}^{N-1}n^{2}\\ &=& 4\pi^{2}\frac{(N-1)(2N-1)}{6N} \end{array} $$
$$\begin{array}{@{}rcl@{}} \mathbb{E}_{n_{p}^{,}}\left[\text{trace}(\mathbf{G}_{g}\hat{\mathbf{A}}_{r}\hat{\mathbf{D}}_{r}^{H}\mathbf{G}^{H}\hat{\mathbf{D}}_{r}\left( (\hat{\mathbf{D}}_{r}^{H}\hat{\mathbf{D}}_{r})^{-1}\right)^{H}\hat{\mathbf{A}}_{r}^{H})\right]\\ =\frac{4\pi^{2}}{NL}\frac{1}{P}\left( \sum\limits_{n=1}^{N-1}n\right)\mathbb{E}_{n_{p}^{,}}[\sum\limits_{p=1}^{P}n_{p}^{,}]=\frac{\pi^{2}(N-1)(L-1)}{L} \end{array} $$
$$\begin{array}{@{}rcl@{}} \mathbb{E}_{n_{p}^{,}}\left[\text{trace}(\hat{\mathbf{A}}_{r}(\hat{\mathbf{D}}_{r}^{H}\hat{\mathbf{D}}_{r})^{-1}\hat{\mathbf{D}}_{r}^{H}\mathbf{G}\hat{\mathbf{D}}_{r}\hat{\mathbf{A}}_{r}^{H}\mathbf{G}_{g}^{H})\right] \\ =\frac{4\pi^{2}}{NL}\frac{1}{P}\left( \sum\limits_{n=1}^{N-1}n\right)\mathbb{E}_{n_{p}^{,}}[\sum\limits_{p=1}^{P}n_{p}^{,}]=\frac{\pi^{2}(N-1)(L-1)}{L} \end{array} $$
$$\begin{array}{@{}rcl@{}} &&\mathbb{E}_{n_{p}^{,}}\left[\text{trace}(\hat{\mathbf{A}}_{r}(\hat{\mathbf{D}}_{r}^{H}\hat{\mathbf{D}}_{r})^{-1}\hat{\mathbf{D}}_{r}^{H}\mathbf{G}\hat{\mathbf{D}}_{r}\right.\\ &&\ \ \ \ \ \ \ \ \ \ \left.\hat{\mathbf{D}}_{r}^{H}\mathbf{G}^{H}\hat{\mathbf{D}}_{r}\left( (\hat{\mathbf{D}}_{r}^{H}\hat{\mathbf{D}}_{r})^{-1}\right)^{H}\hat{\mathbf{A}}_{r}^{H})\right]\\ &&= \frac{4\pi^{2}N}{L^{2}P^{2}}\mathbb{E}_{n_{p}^{,}}\left[\left( \sum\limits_{p=1}^{P}n_{p}^{,}\right)^{2}\right]\\ &&=\pi^{2}N(\frac{(P-1)(L-1)}{PL}+\frac{2(L-P)(2L-1)}{3PL^{2}}) \end{array} $$
$$ \ \ \mathbb{E}_{n_{p}^{,}}\left[\text{trace}(\hat{\mathbf{A}}_{r}(\hat{\mathbf{D}}_{r}^{H}\hat{\mathbf{D}}_{r})^{-1}\hat{\mathbf{A}}_{r}^{H})\right]=N/P $$

where \(\phantom {\dot {i}\!}\mathbb {E}_{n_{p}^{,}}[\cdot ]\) shows the expectation over all the possible combinations of \(\phantom {\dot {i}\!}n_{p}^{,}\) for p=0,...,P−1. To derive the equations above, we used the trace property trace(A B H) = trace(B H A) and the equalities \(\phantom {\dot {i}\!}\hat {\mathbf {D}}_{r}^{H}\hat {\mathbf {D}}_{r}\) = P, \(\phantom {\dot {i}\!}\hat {\mathbf {A}}_{r}^{H}\hat {\mathbf {A}}_{r}\) = N, \(\phantom {\dot {i}\!}{\sum }_{n=1}^{N-1}n=\frac {(N-1)N}{2}\), \(\phantom {\dot {i}\!}{\sum }_{n=1}^{N-1}n^{2}\) =\(\phantom {\dot {i}\!}\frac {(N-1)N(2N-1)}{6}\), \(\phantom {\dot {i}\!}\mathbb {E}_{n_{p}^{,}}[{\sum }_{p=1}^{P}n_{p}^{,}]\) =\(\phantom {\dot {i}\!}\frac {P}{L}\frac {(L-1)L}{2}\) and \(\phantom {\dot {i}\!}\mathbb {E}_{n_{p}^{,}}\left [\left ({\sum }_{p=1}^{P}n_{p}^{,}\right )^{2}\right ]=\) \(\phantom {\dot {i}\!}\frac {P(P-1)}{L(L-1)}\) \(\phantom {\dot {i}\!}\left (\frac {(L-1)L^{2}}{2})\right )^{2}\) \(\phantom {\dot {i}\!}+\frac {P(L-P)}{L(L-1)}\frac {(L-1)L(2L-1)}{6}\). Thus, (28) becomes:

$$\mathbb{E}[{\Delta}\mathbf{H}_{r}^{H}{\Delta}\mathbf{H}_{r}] \approx N{\sigma_{h}^{2}}\sigma_{\frac{\Delta\tau}{T_{s}}}^{2}\frac{\pi^{2}}{3}+\frac{N}{P}{\sigma_{n}^{2}} $$

When I>1, as long as τ i ’s are sufficiently separated and uncorrelated for different i’s, Eq. 28 can be approximated as:

$$ \mathbb{E}[{\Delta}\mathbf{H}_{r}^{H}{\Delta}\mathbf{H}_{r}] \approx IN{\sigma_{h}^{2}}\sigma_{\frac{\Delta\tau}{T_{s}}}^{2}\frac{\pi^{2}}{3}+\frac{IN}{P}{\sigma_{n}^{2}} $$
(29)

Dividing (29) by the number of subcarriers N, we obtain the MSE estimate per subcarrier given by Eq. 14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pejoski, S., Kafedziski, V. Joint Atomic Norm Based Estimation of Sparse Time Dispersive SIMO Channels with Common Support in Pilot Aided OFDM Systems. Mobile Netw Appl 22, 785–795 (2017). https://doi.org/10.1007/s11036-016-0748-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-016-0748-y

Keywords

Navigation