Packet Delay Metrics for IEEE 802.11 Distributed Coordination Function | Mobile Networks and Applications Skip to main content
Log in

Packet Delay Metrics for IEEE 802.11 Distributed Coordination Function

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce a comprehensive packet delay analysis for wireless networks based on IEEE 802.11 Distributed Coordination Function (DCF). We develop mathematical models that calculate a set of packet delay metrics, namely a) the average packet delay for successfully transmitted packets, b) the average packet delay of successfully transmitted packets experiencing a specific number of collisions, c) the average packet drop time, d) the delay jitter and e) the delay distribution by computing the probability of a packet to be successfully transmitted experiencing delay time lower than a given value. All the developed models are based on calculating station’s delay time at the transmission slot(s) plus the average time that station defers at backoff slots before successful transmission. The mathematical models are simple, computationally fast and can be used to build admission control algorithms. Simulation results show that our proposed mathematical analysis is highly accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. IEEE standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications (2001) IEEE Std: 802.11b-1999/Cor 1-2001

  2. Bianchi G (2000) Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Sel Areas Commun 18(3):535–547. doi:10.1109/49.840210

    Article  Google Scholar 

  3. Wu H, Peng Y, Long K, Cheng S, Ma J (2002) “Performance of reliable transport protocol over IEEE 802.11 Wireless LAN: analysis and enhancement”. In Proceedings of IEEE INFOCOM 599–607

  4. Cali F, Conti M, Gregori E (2000) Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM T Network 8(6):785–790. doi:10.1109/90.893874

    Article  Google Scholar 

  5. Chhaya HS, Gupta S (1997) Performance modelling of asynchronous data transfer methods of IEEE 802.11 MAC protocol. Wirel Netw 3(3):217–234. doi:10.1023/A:1019109301754

    Article  Google Scholar 

  6. Hadzi-Velkov Z, Spasenovski B (2003) “Saturation throughput-delay analysis of IEEE 802.11 DCF in fading channel”. In Proceedings of IEEE International Conference on Communications (ICC) 1:121–126

  7. Chatzimisios P, Boucouvalas AC, Vitsas V (2007) Achieving performance enhancement in IEEE 802.11 WLANs by using the DIDD backoff mechanism. Int J Commun Syst 20(1):23–41. doi:10.1002/dac.811

    Article  Google Scholar 

  8. Chatzimisios P, Boucouvalas AC, Vitsas V (2003) “IEEE 802.11 Packet delay—A finite retry limit analysis”. In Proceedings of IEEE GLOBECOM 2:950–954

  9. Carvalho MM, Garcia-Luna-Aceves JJ (2003) “Delay Analysis of IEEE 802.11 in single-hop networks”. In Proceedings of 11th IEEE International Conference on Network Protocols (ICNP) 146–155

  10. Vukovic I, Smavatkul N (2004) “Delay analysis of different backoff algorithms in IEEE 802.11”. In Proceedings of IEEE Vehicular Technology Conference (VTC ‘04-Fall) 6:4553–4557, September

  11. Raptis P, Vitsas V, Paparrizos K, Chatzimisios P, Boucouvalas AC, Adamidis P. (2005) “Packet delay modeling of IEEE 802.11 Wireless LANs”. In Proceedings of 2nd International Conference on Cybernetics and Information Technologies, Systems and Applications (CITSA) I:71–76

  12. Raptis P, Vitsas V, Paparrizos K, Chatzimisios P, Boucouvalas AC (2005) “Packet delay distribution of the IEEE 802.11 distributed coordination function”. In Proceedings of 6th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WOWMOM), 299–304

  13. Li M, Claypool M, Kinicki R (2006) “Packet dispersion in IEEE 802.11 wireless networks”. In Proceedings 31st IEEE Conference on Local Computer Networks (LCN) 721–729

  14. Zhai H, Fang Y (2003) “Performance of wireless LANs Based on IEEE 802.11 MAC protocols”. In Proceedings of 14th IEEE Symposium on Personal, Indoor and Mobile Radio Communication (PIMRC) 2586–2590

  15. Tickioo O, Sikdar B (2004) “Queuing analysis and delay mitigation in IEEE 802.11 Random Access MAC based Wireless Networks”. In Proceedings of IEEE INFOCOM 2:1404–1413

  16. Banchs A, Serrano P, Azcorra A (2006) End-to-end delay analysis and admission control in 802.11 DCF WLANs. Comput Commun 29(7):842–854. doi:10.1016/j.comcom.2005.08.006

    Article  Google Scholar 

  17. Raptis P, Banchs A, Vitsas V, Paparrizos K, Chatzimisios P (2006) “Delay distribution analysis of the RTS/CTS mechanism of IEEE 802.11”. In Proceedings of the 31st IEEE Conference on Local Computer Networks (LCN) 404–410

  18. Raptis P, Banchs A, Paparrizos K (2006) “A simple and effective delay distribution analysis for IEEE 802.11”. In Proceedings of 17th IEEE Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) 1–5

Download references

Acknowledgement

The project is co-funded by the European Social Fund & National Resources- EPEAEK II-ARCHIMIDIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Raptis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raptis, P., Vitsas, V. & Paparrizos, K. Packet Delay Metrics for IEEE 802.11 Distributed Coordination Function. Mobile Netw Appl 14, 772–781 (2009). https://doi.org/10.1007/s11036-008-0124-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-008-0124-7

Keywords

Navigation