Abstract
This paper briefly overviews some of the results and research directions. In the area of substructural logics from the last couple of decades. Substructural logics are understood here to include relevance logics, linear logic, variants of Lambek calculi and some other logics that are motivated by the idea of omitting some structural rules or making other structural changes in LK, the original sequent calculus for classical logic.
Similar content being viewed by others
Notes
This paper was originally written. In 2012 for the 40th anniversary issue of the Journal of Philosophical Logic; I only had time to make some small revisions and additions. In October 2014.
References
Allwein, G., & Dunn, J.M. (1993). Kripke models for linear logic. Journal of Symbolic Logic, 58, 514–545.
Anderson, A.R., & Belnap, N.D. (1975). Entailment: The logic of relevance and necessity, Vol. I. Princeton: Princeton University Press.
Anderson, A.R., Belnap, N.D., & Dunn, J.M. (1992). Entailment: The logic of relevance and necessity, Vol. II. Princeton: Princeton University Press.
Avron, A (1988). The semantics and proof theory of linear logic. Theoretical Computer Science, 57, 161–184.
Belnap, N.D. (1982). Display logic. Journal of Philosophical Logic, 11, 375–417.
Belnap, N.D. (1990). Linear logic displayed. Notre Dame Journal of Formal Logic, 31, 14–25.
Belnap, N.D., & Wallace, J.R. (1961). A decision procedure for the system \(E_{\overline {I}}\) of entailment with negation. Technical Report 11, Contract No. SAR/609 (16), Office of Naval Research, New Haven.
Bimbó, K. The decidability of the intensional fragment of classical linear logic. (19 pages, submitted for publication).
Bimbó, K. (2001). Semantics for structurally free logics L C+. Logic Journal of the IGPL, 9, 525–539.
Bimbó, K (2005). Admissibility of cut in L C with fixed point combinator. Studia Logica, 81, 399–423.
Bimbó, K. (2007). Relevance logics. In D. Jacquette (Ed.), Philosophy of logic, Handbook of the philosophy of science (D. Gabbay, P. Thagard and J. Woods, eds.) (Vol. 5, pp. 723–789). North-Holland: Elsevier.
Bimbó, K. (2009). Dual gaggle semantics for entailment. Notre Dame Journal of Formal Logic, 50, 23–41.
Bimbó, K. (2012). Combinatory logic: Pure, applied and typed.. Discrete mathematics and its applications. Boca Raton: CRC Press.
Bimbó, K. (2014). Proof theory: Sequent calculi and related formalisms.. Discrete mathematics and its applications. Boca Raton: CRC Press.
Bimbó, K., & Dunn, J.M. (2002). Four-valued logic. Notre Dame Journal of Formal Logic, 42, 171–192.
Bimbó, K., & Dunn, J.M. (2008). Generalized Galois logics: Relational semantics of nonclassical logical calculi, CSLI lecture notes (Vol. 188). Stanford: CSLI Publications.
Bimbó, K., & Dunn, J.M. (2009). Symmetric generalized Galois logics. Logica Universalis, 3, 125–152.
Bimbó, K., & Dunn, J.M. (2010). Calculi for symmetric generalized Galois logics. In J. van Benthem & M. Moortgat (Eds.), Festschrift for Joachim Lambek, Linguistic Analysis (Vol. 36, pp. 307–343). Vashon: Linguistic Analysis.
Bimbó, K., & Dunn, J.M. (2012). New consecution calculi for \(R_{\rightarrow }^{\,t}\). Notre Dame Journal of Formal Logic, 53, 491–509.
Bimbó, K., & Dunn, J.M. (2013). On the decidability of implicational ticket entailment. Journal of Symbolic Logic, 78, 214–236.
Bimbó, K., & Dunn, J.M. (2014). Extracting BB \(^{\prime }\) IW inhabitants of simple types from proofs in the sequent calculus \(LT_{\rightarrow }^{\, t}\) for implicational ticket entailment. Logica Universalis, 8, 141–164.
Bimbó, K., & Dunn, J.M. Modalities in lattice-R. (32 pages, ms.)
Birkhoff, G. (1967). Lattice theory, AMS colloquium publications, 3rd edn. (Vol. 25). Providence: American Mathematical Society.
Blok, W.J., & Raftery, J.G. (2004). Fragments of R-mingle. Studia Logica, 78, 59–106.
Brady, R.T. (Ed.) (2003). Relevant logics and their rivals. A continuation of the work of R. Sylvan, R. Meyer, V. Plumwood and R. Brady (Vol. II). Burlington: Ashgate.
Church, A. (1951). The weak theory of implication In A. Menne, A. Wilhelmy & H. Angsil (Eds.), , Kontrolliertes Denken, Untersuchungen zum Logikkalkül und zur Logik der Einzelwissenschaften (pp. 22–37). Karl Alber: Komissions-Verlag.
Cook, S.A. (1971). The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on the Theory of Computing (pp. 151–158).
Curry, H.B. (1963). Foundations of mathematical logic. New York: McGraw-Hill Book Company. (Dover, New York, NY, 1977).
Došen, K., & Schroeder-Heister, P. (1993). Substructural logics. Oxford: Clarendon.
Dunn, J.M. (1973). A ‘Gentzen system’ for positive relevant implication, (abstract). Journal of Symbolic Logic, 38, 356–357.
Dunn, J.M. (1976). A Kripke-style semantics for R-mingle using a binary accessibility relation. Studia Logica, 35, 163–172.
Dunn, J.M. (1976). Quantification and RM. Studia Logica, 35, 315–322.
Dunn, J.M. (1986). Relevance logic and entailment In D. Gabbay & F. Guenthner (Eds.), , Handbook of philosophical logic, 1st edn. (Vol. 3, pp. 117–224).. Dordrecht: D. Reidel.
Dunn, J.M. (1991). Gaggle theory: An abstraction of Galois connections and residuation with applications to negation, implication, and various logical operators In J. van Eijck (Ed.), , Logics in AI: European workshop JELIA ’90, number 478 in lecture notes in computer science (pp. 31–51). Berlin: Springer.
Dunn, J.M. (1993). Partial-gaggles applied to logics with restricted structural rules In K. Došen & P. Schroeder-Heister (Eds.), , Substructural logics (pp. 63–108). Oxford: Clarendon.
Dunn, J.M. (1995). Gaggle theory applied to intuitionistic, modal and relevance logic In I. Max & W. Stelzner (Eds.), , Logik und Mathematik. Frege-Kolloquium Jena (pp. 335–368). Berlin: W. de Gruyter.
Dunn, J.M., & Hardegree, G.M. (2001). Algebraic methods in philosophical logic, Oxford logic guides (Vol. 41). Oxford: Oxford University Press.
Dunn, J.M., & Meyer, R.K. (1997). Combinators and structurally free logic. Logic Journal of the IGPL, 5, 505–537.
Dunn, J.M., & Restall, G. (2002). Relevance logic In D. Gabbay & F. Guenthner (Eds.), , Handbook of philosophical logic, 2nd edn. (Vol. 6, pp. 1–128).. Amsterdam: Kluwer.
Gentzen, G. (1964). Investigations into logical deduction. American Philosophical Quarterly, 1, 288–306.
Giambrone, S. (1985). T W + and R W + are decidable. Journal of Philosophical Logic, 14, 235–254.
Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50, 1–102.
Goldblatt, R. (2009). Conservativity of Heyting implication over relevant quantification. Review of Symbolic Logic, 2, 310–341.
Goldblatt, R., & Mares, E.D. (2006). An alternative semantics for quantified relevant logic. Journal of Symbolic Logic, 71, 163–187.
Goré, R. (1998). Substructural logics on display. Logic Journal of the IGPL, 6, 451–504.
Hartonas, C., & Dunn, J.M. (1997). Stone duality for lattices. Algebra Universalis, 37, 391–401.
Henkin, L. (1949). The completeness of the first-order functional calculus. Journal of Symbolic Logic, 14, 159–166.
Jónsson, B., & Tarski, A. (1951). Boolean algebras with operators, I. American Journal of Mathematics, 73, 891–939.
Jónsson, B., & Tarski, A. (1952). Boolean algebras with operators, II. American Journal of Mathematics, 74, 127–162.
Kamide, N. (2002). Kripke semantics for modal substructural logics. Journal of Logic, Language and Computation, 11, 453–470.
Kamide, N. (2003). Normal modal substructural logics with strong negation. Journal of Philosophical Logic, 32, 589–612.
Kripke, S.A. (1959). The problem of entailment, (abstract). Journal of Symbolic Logic, 24, 324.
Kripke, S.A. (1963). Semantical analysis of modal logic I. Normal modal propositional calculi. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 67–96.
Kripke, S.A. (1965). Semantical analysis of intuitionistic logic I. In J.N. Crossley & M.A.E. Dummett (Eds.), Formal Systems and Recursive Functions, Proceedings of the Eighth Logic Colloquium (pp. 92–130). Amsterdam.
Kripke, S.A. (1965). Semantical analysis of modal logic II. Non-normal propositional calculi In J.W. Addison, L. Henkin & A. Tarski (Eds.), The theory of models (pp. 206–220). North-Holland, Amsterdam.
Lambek, J. (1961). On the calculus of syntactic types In R. Jacobson (Ed.), Structure of language and its mathematical aspects (pp. 166–178). Providence: American Mathematical Society.
Lemmon, E.J., Meredith, C.A., Meredith, D., Prior, A.N., & Thomas, I. (1969). Calculi of pure strict implication In J.W. Davis, D.J. Hockney & W.K. Wilson (Eds.), Philosophical logic (pp. 215–250). Dordrecht: D. Reidel.
Lincoln, P., Mitchell, J., Scedrov, A., & Shankar, N. (1992). Decision problems for linear logic. Annals of Pure and Applied Logic, 56, 239–311.
Mares, E.D. (2000). CE is not a conservative extension of E. Journal of Philosophical Logic, 29, 263–275.
Mares, E.D. (2004). Relevant logic: A philosophical interpretation. Cambridge, UK: Cambridge University Press.
Mares, E.D., & Meyer, R.K. (2001). Relevant logics In L. Goble (Ed.), The Blackwell guide to philosophical logic, Blackwell philosophy guides (pp. 280–308). Oxford: Blackwell Publishers.
Meyer, R.K. (1966). Topics in modal and many-valued logic. PhD thesis, University of Pittsburgh, Ann Arbor.
Meyer, R.K. (2004). Ternary relations and relevant semantics. Annals of Pure and Applied Logic, 127, 195–217.
Meyer, R.K., & Routley, R. (1972). Algebraic analysis of entailment I. Logique et Analyse, 15, 407–428.
Meyer, R.K., & Routley, R. (1973). Classical relevant logics I. Studia Logica, 32, 51–66.
Meyer, R.K., & Routley, R. (1974). Classical relevant logics II. Studia Logica, 33, 183–194.
Moorgat, M. (2010). Symmetric categorial grammar: residuation and Galois connections In J. van Benthem & M. Moortgat (Eds.), Festschrift for Joachim Lambek, Linguistic Analysis (Vol. 36, pp. 143–166).. Vashon: Linguistic Analysis.
Morrill, G., & Valentín, O. (2010). Displacement calculus In J. van Benthem & M. Moortgat (Eds.), Festschrift for Joachim Lambek, Linguistic Analysis (Vol. 36, pp. 167–192). Vashon: Linguistic Analysis.
Ono, H. (2003). Substructural logics and residuated lattices — an introduction In V.F. Hendricks & J. Malinowski (Eds.), 50 years of Studia Logica, Trends in Logic (Vol. 21, pp. 21193–228).. Amsterdam: Kluwer.
Padovani, V. (2013). Ticket Entailment is decidable. Mathematical Structures in Computer Science, 23, 568–607.
Paoli, F. (2002). Substructural logics: A primer, Trends in Logic (Vol. 13). Dordrecht: Kluwer.
Pentus, M. (2006). Lambek calculus is NP-complete. Theoretical Compuer Science, 357, 186–201.
Priestley, H.A. (1970). Representation of distributive lattices by means of ordered Stone spaces. Bulletin of the London Mathematical Society, 2, 186–190.
Restall, G. (1995). Display logic and gaggle theory. Reports on Mathematical Logic, 29, 133–146.
Restall, G. (2000). An introduction to substructural logics. London: Routledge.
Robles, G., & Méndez, J.M. (2006). Converse Ackermann property and constructive negation defined with a negation connective. Logic and Logical Philosophy, 15, 113–130.
Rosenthal, K.I. (1990). Quantales and their applications. Number 234 in Pitman research notes in mathematics. Essex, UK and New York: Longman and J. Wiley.
Routley, R., & Meyer, R.K. (1972). The semantics of entailment – II. Journal of Philosophical Logic, 1, 53–73.
Routley, R., & Meyer, R.K. (1972). The semantics of entailment – III. Journal of Philosophical Logic, 1, 192–208.
Routley, R., & Meyer, R.K. (1973). The semantics of entailment. In H. Leblanc (Ed.), Truth, Syntax and Modality, Proceedings of the Temple University Conference on Alternative Semantics (pp. 194–243). Amsterdam.
Routley, R., Meyer, R.K., Plumwood, V., & Brady, R.T. (1982). Relevant logics and their rivals I. Atascadero: Ridgeview Publishing Company.
Seki, T. (2004). General frames for relevant modal logics. Notre Dame Journal of Formal Logic, 44, 93–109.
Stone, M.H. (1936). The theory of representations for Boolean algebras. Transactions of the American Mathematical Society, 40, 37–111.
Stone, M.H. (1937). Topological representations of distributive lattices and Brouwerian logics. Časopis pro pěstování matematiky a fysiky, Čast matematická, 67, 1–25.
Szabo, M.E. (1969). The Collected Papers of Gerhard Gentzen. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam.
Thistlewaite, P.B., McRobbie, M.A., & & Meyer, R.K. (1988). Automated theorem proving in non-classical logics. London: Pitman.
Troelstra, A.S. (1992). Lectures on linear logic, CSLI lecture notes (Vol. 29). Stanford: CSLI Publications.
Urquhart, A. (1978). A topological representation theorem for lattices. Algebra Universalis, 8, 45–58.
Urquhart, A (1984). The undecidability of entailment and relevant implication. Journal of Symbolic Logic, 49, 1059–1073.
Urquhart, A. (1990). The complexity of decision procedures in relevance logic. In J.M. Dunn & A. Gupta (Eds.), Truth or consequences (pp. 61–76). Amsterdam: Kluwer.
Urquhart, A. (1999). The complexity of decision procedures in relevance logic II. Journal of Symbolic Logic, 64, 1774–1802.
Urquhart, A (2007). Four variables suffice. Australasian Journal of Logic, 5, 66–73.
Acknowledgments
I am grateful to J. Michael Dunn for helpful comments on this paper. Also, I would like to thank A. Tedder for some English suggestions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bimbó, K. Current Trends in Substructural Logics. J Philos Logic 44, 609–624 (2015). https://doi.org/10.1007/s10992-015-9346-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10992-015-9346-x