Population connectivity: recent advances and new perspectives | Landscape Ecology Skip to main content
Log in

Population connectivity: recent advances and new perspectives

  • Perspective
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Connectivity is a vital component of metapopulation and landscape ecology, influencing fundamental processes such as population dynamics, evolution, and community responses to climate change. Here, we review ongoing developments in connectivity science, providing perspectives on recent advances in identifying, quantifying, modelling and analysing connectivity, and highlight new applications for conservation. We also address ongoing challenges for connectivity research, explore opportunities for addressing them and highlight potential linkages with other fields of research. Continued development of connectivity science will provide insights into key aspects of ecology and the evolution of species, and will also contribute significantly towards achieving more effective conservation outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad MA, Teredesai A (2006) Modeling spread of ideas in online social networks. In: Proceedings of the fifth Australasian conference on data mining and analystics, vol 61. Australian Computer Society, Inc., Sydney, pp 185–190

  • Aiken CM, Navarrete SA (2011) Environmental fluctuations and asymmetrical dispersal: generalized stability theory for studying metapopulation persistence and marine protected areas. Mar Ecol Prog Ser 428:77–88

    Article  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11(10):697–709

    Article  PubMed  CAS  Google Scholar 

  • Allesina S, Pascual M (2009) Googling Food Webs: can an Eigenvector Measure Species’ Importance for Coextinctions? PLoS Comput Biol 5(9):e1000494

    Article  PubMed  CAS  Google Scholar 

  • Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local Replenishment of Coral Reef Fish Populations in a Marine Reserve. Science 316(5825):742–744

    Article  PubMed  CAS  Google Scholar 

  • Avise JC (2010) Perspective: conservation genetics enters the genomics era. Conserv Genet 11(2):665–669

    Article  Google Scholar 

  • Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landscape Ecol 22(8):1117–1129

    Article  Google Scholar 

  • Balkenhol N, Gugerli F, Cushman S, Waits L, Coulon A, Arntzen J, Holderegger R, Wagner H (2009) Identifying future research needs in landscape genetics: where to from here? Landscape Ecol 24(4):455–463

    Google Scholar 

  • Ball IR, Possingham HP, Watts M (2009) Marxan and relatives: software for spatial conservation prioritisation. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritisation: quantitative methods and computational tools. Oxford University Press, Oxford, pp 185–195

    Google Scholar 

  • Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185(1):313–326

    Article  PubMed  Google Scholar 

  • Berry O, Tocher MD, Sarre SD (2004) Can assignment tests measure dispersal? Mol Ecol 13(3):551–561

    Article  PubMed  Google Scholar 

  • Berumen M, Walsh H, Raventos N, Planes S, Jones G, Starczak V, Thorrold S (2010) Otolith geochemistry does not reflect dispersal history of clownfish larvae. Coral Reefs 29(4):883–891

    Google Scholar 

  • Bode M, Bode L, Armsworth PR (2006) Larval dispersal reveals regional sources and sinks in the Great Barrier Reef. Mar Ecol Prog Ser 308:17–25

    Article  Google Scholar 

  • Bodin Ö, Crona BI (2009) The role of social networks in natural resource governance: what relational patterns make a difference? Glob Environ Change 19(3):366–374

    Article  Google Scholar 

  • Borgatti SP, Mehra A, Brass DJ, Labianca G (2009) Network analysis in the social sciences. Science 323(5916):892–895

    Article  PubMed  CAS  Google Scholar 

  • Borgman C, Wallis J, Enyedy N (2007) Little science confronts the data deluge: habitat ecology, embedded sensor networks, and digital libraries. Int J Digit Libr 7(1):17–30

    Article  Google Scholar 

  • Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Ann Rev Ecol Syst 40(1):193–216

    Google Scholar 

  • Cantrell RS, Cosner C (2003) Spatial ecology via reaction-diffusion equations. Wiley, Chichester

    Google Scholar 

  • Carroll C, Dunk JR, Moilanen A (2010) Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Glob Change Biol 16(3):891–904

    Article  Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis, and interpretation. Sinauer Associates, Sunderland

    Google Scholar 

  • Caswell H (2007) Sensitivity analysis of transient population dynamics. Ecol Lett 10(1):1–15

    Article  PubMed  Google Scholar 

  • Cerdeira JO, Pinto LS, Cabeza M, Gaston KJ (2010) Species specific connectivity in reserve-network design using graphs. Biol Conserv 143(2):408–415

    Article  Google Scholar 

  • Chester CC (2006) Conservation across borders: biodiversity in an interdependent world. Island Press, Washington, DC

    Google Scholar 

  • Ciarleglio M, Wesley Barnes J, Sarkar S (2009) ConsNet: new software for the selection of conservation area networks with spatial and multi-criteria analyses. Ecography 32(2):205–209

    Article  Google Scholar 

  • Claudet J (2011) Marine protected areas: a multidisciplinary approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066111

    Article  CAS  Google Scholar 

  • Cowen RK, Guigand CM (2008) In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results. Limnol Oceanogr Methods 6:126–132

    Article  Google Scholar 

  • Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466

    Article  Google Scholar 

  • Crooks KR, Sanjayan M (eds) (2006) Connectivity conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Cushman SA, McKelvey KS, Schwartz MK (2009) Use of empirically derived source-destination models to map regional conservation corridors (Utilización de Modelos Fuente-Destino Empíricamente Derivados para Cartografiar Corredores de Conservación Regionales). Conserv Biol 23(2):368–376

    Article  PubMed  Google Scholar 

  • Dale MRT, Dixon P, Fortin M-J, Legendre P, Myers DE, Rosenberg MS (2002) Conceptual and mathematical relationships among methods for spatial analysis. Ecography 25(5):558–577

    Article  Google Scholar 

  • Donald PF, Evans AD (2006) Habitat connectivity and matrix restoration: the wider implications of agri-environment schemes. J Appl Ecol 43(2):209–218

    Article  Google Scholar 

  • Donnelly P (2008) Progress and challenges in genome-wide association studies in humans. Nature 456(7223):728–731

    Article  PubMed  CAS  Google Scholar 

  • Douglas DH (1994) Least-cost path in GIS using an accumulated cost surface and slopelines, Cartographica. Int J Geogr Inf Geovisual 31(3):37–51

    Google Scholar 

  • Drielsma M, Ferrier S (2009) Rapid evaluation of metapopulation persistence in highly variegated landscapes. Biol Conserv 142(3):529–540

    Article  Google Scholar 

  • Duchesne P, Castric T, Bernatchez L (2005) pasos (parental allocation of singles in open systems): a computer program for individual parental allocation with missing parents. Mol Ecol Notes 5(3):701–704

    Article  CAS  Google Scholar 

  • Durbec M, Cavalli L, Grey J, Chappaz R, Nguyen B (2010) The use of stable isotopes to trace small-scale movements by small fish species. Hydrobiologia 641(1):23–31

    Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40(1):677–697

    Article  Google Scholar 

  • Erös T, Olden J, Schick R, Schmera D, Fortin M-J (2012) Characterizing connectivity relationships in freshwaters using patch-based graphs. Landscape Ecol 27(2):303–317

    Article  Google Scholar 

  • Estrada E, Bodin Ö (2008) Using network centrality measures to manage landscape connectivity. Ecol Appl 18(7):1810–1825

    Article  PubMed  Google Scholar 

  • Excoffier L, Heckel G (2006) Computer programs for population genetics data analysis: a survival guide. Nat Rev Genet 7(10):745–758

    Article  PubMed  CAS  Google Scholar 

  • Faaborg J, Holmes RT, Anders AD, Bildstein KL, Dugger KM, Gauthreaux SA Jr, Heglund P, Hobson KA, Jahn AE, Johnson DH, Latta SC, Levey DJ, Marra PP, Merkord CL, Erica NOL, Rothstein SI, Sherry TW, Scott Sillett T, Thompson III FR, Warnock N (2010) Recent advances in understanding migration systems of New World land birds. Ecol Monogr 80(1):3–48

    Google Scholar 

  • Faubet P, Gaggiotti OE (2008) A new Bayesian method to identify the environmental factors that influence recent migration. Genetics 178(3):1491–1504

    Article  PubMed  Google Scholar 

  • Ferreras P (2001) Landscape structure and asymmetrical inter-patch connectivity in a metapopulation of the endangered Iberian lynx. Biol Conserv 100(1):125–136

    Article  Google Scholar 

  • Figueira W, Crowder L (2006) Defining patch contribution in source-sink metapopulations: the importance of including dispersal and its relevance to marine systems. Popul Ecol 48(3):215–224

    Article  Google Scholar 

  • Fleming PJS, Tracey JP (eds) (2008) Aerial surveys of wildlife: theory and applications. CSIRO Publishing, Collingwood

    Google Scholar 

  • Foster NL, Paris CB, Kool JT, Baums IB, Stevens JR, Sanchez JA, Bastidas C, Agudelo C, Bush P, Day O, Ferrari R, Gonzalez P, Gore S, Guppy R, McCartney M, McCoy C, Mendes J, Srinivasan A, Steiner S, Vermeij MJA, Weil E, Mumby PJ (2012) Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Mol Ecol 21(5):1143–1157

    Google Scholar 

  • Francesco Ficetola G, Bonin A (2011) Conserving adaptive genetic diversity in dynamic landscapes. Mol Ecol 20(8):1569–1571

    Article  Google Scholar 

  • Fujiwara M, Anderson K, Neubert M, Caswell H (2006) On the estimation of dispersal kernels from individual mark-recapture data. Environ Ecol Stat 13(2):183–197

    Article  Google Scholar 

  • Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144(1):44–55

    Article  Google Scholar 

  • González-Megías A, Gómez JM, Sánchez-Piñero F (2005) Consequences of spatial autocorrelation for the analysis of metapopulation dynamics. Ecology 86(12):3264–3271

    Article  Google Scholar 

  • Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, Princeton

  • Hamilton MP, Graham EA, Rundel PW, Allen MF, Kaiser W, Hansen MH, Estrin DL (2007) New approaches in embedded networked sensing for terrestrial ecological observatories. Environ Eng Sci 24(2):192–204

    Google Scholar 

  • Harrison Hugo B, Williamson David H, Evans Richard D, Almany Glenn R, Thorrold Simon R, Russ Garry R, Feldheim Kevin A, van Herwerden L, Planes S, Srinivasan M, Berumen Michael L, Jones Geoffrey P (2012) Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biol 22(11):1023–1028

    Google Scholar 

  • Hedgecock D, Barber PH, Edmands S (2007) Genetic approaches to measuring connectivity. Oceanography 20(3):70–79

    Article  Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142(1):14–32

    Article  Google Scholar 

  • Higgins AJ, Hajkowicz S, Bui E (2008) A multi-objective model for environmental investment decision making. Comput Oper Res 35(1):253–266

    Article  Google Scholar 

  • Hilty J, Lidicker WZ Jr, Merenlender A (2006) Corridor ecology: the science and practice of linking landscapes for biodiversity conservation. Island Press, Washington, DC

    Google Scholar 

  • Hobson KA (2008) Applying isotopic methods to tracking animal movements. In: Keith AH, Leonard IW (eds) Terrestrial ecology. Elsevier, New York, pp 45–78

  • Hodgson JA, Moilanen A, Thomas CD (2009a) Metapopulation responses to patch connectivity and quality are masked by successional habitat dynamics. Ecology 90(6):1608–1619

    Article  PubMed  Google Scholar 

  • Hodgson JA, Thomas CD, Wintle BA, Moilanen A (2009b) Climate change, connectivity and conservation decision making: back to basics. J Appl Ecol 46(5):964–969

    Article  Google Scholar 

  • Holderegger R, Wagner H (2006) A brief guide to landscape genetics. Landscape Ecol 21(6):793–796

    Article  Google Scholar 

  • Holmes EE, Lewis MA, Banks JE, Veit RR (1994) Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75(1):17–29

    Article  Google Scholar 

  • Hudson ME (2008) Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol Ecol Res 8(1):3–17

    Article  CAS  Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46(1):10–18

    Article  Google Scholar 

  • Jacobi MN, Jonsson PR (2011) Optimal networks of nature reserves can be found through eigenvalue perturbation theory of the connectivity matrix. Ecol Appl 21(5):1861–1870

    Article  PubMed  Google Scholar 

  • Jacobi MN, André C, Döös K, Jonsson PR (2012) Identification of subpopulations from connectivity matrices. Ecography doi:10.1111/j.1600-0587.2012.07281.x

  • Jacobson B, Peres-Neto P (2010) Quantifying and disentangling dispersal in metacommunities: how close have we come? How far is there to go? Landscape Ecol 25(4):495–507

    Article  Google Scholar 

  • Jaquiéry J, Broquet T, Hirzel AH, Yearsley J, Perrin N (2011) Inferring landscape effects on dispersal from genetic distances: how far can we go? Mol Ecol 20(4):692–705

    Article  PubMed  Google Scholar 

  • Johst K, Drechsler M, van Teeffelen AJA, Hartig F, Vos CC, Wissel S, Wätzold F, Opdam P (2011) Biodiversity conservation in dynamic landscapes: trade-offs between number, connectivity and turnover of habitat patches. J Appl Ecol 48(5):1227–1235

    Google Scholar 

  • Jombart T, Pontier D, Dufour AB (2009) Genetic markers in the playground of multivariate analysis. Heredity 102(4):330–341

    Article  PubMed  CAS  Google Scholar 

  • Jones AG, Ardren WR (2003) Methods of parentage analysis in natural populations. Mol Ecol 12:2511–2523

    Article  PubMed  CAS  Google Scholar 

  • Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15(14):1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Jones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Res 10(1):6–30

    Article  Google Scholar 

  • Karanth KU, Nichols JD, Kumar NS, Hines JE (2006) Assessing tiger population dynamics using photographic capture-recapture sampling. Ecology 87(11):2925–2937

    Article  PubMed  Google Scholar 

  • Kays R, Kranstauber B, Jansen C, Carbone P, Rowcliffe M, Foundtain T Tilak S (2009) Camera traps as sensor networks for monitoring animal communities. In: Local computer networks, LCN 2009. IEEE 34th conference on, 2009, pp 811–818

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landscape Ecol 23(8):879–890

    Google Scholar 

  • Kool JT (2009) An object-oriented, individual-based approach for simulating the dynamics of genes in subdivided populations. Ecol Inform 4:136–146

    Article  Google Scholar 

  • Kool JT, Paris CB, Andréfouët S, Cowen RK (2010) Complex migration and the development of genetic structure in subdivided populations: an example from Caribbean coral reef ecosystems. Ecography 33:597–606

    Google Scholar 

  • Kool JT, Paris CB, Barber PH, Cowen RK (2011) Connectivity and the development of population genetic structure in Indo-West Pacific coral reef communities. Glob Ecol Biogeogr 20(5):695–706

    Article  Google Scholar 

  • Leathwick JR, Moilanen A, Ferrier S, Julian K (2010) Complementarity-based conservation prioritization using a community classification, and its application to riverine ecosystems. Biol Conserv 143(4):984–991

    Google Scholar 

  • Lehtomäki J, Tomppo E, Kuokkanen P, Hanski I, Moilanen A (2009) Applying spatial conservation prioritization software and high-resolution GIS data to a national-scale study in forest conservation. For Ecol Manage 258(11):2439–2449

    Article  Google Scholar 

  • Levey DJ, Tewksbury JJ, Bolker BM (2008) Modelling long-distance seed dispersal in heterogeneous landscapes. J Ecol 96(4):599–608

    Article  Google Scholar 

  • Liu J, Hull V, Morzillo AT, Wiens JA (2011) Sources. Cambridge University Press, Cambridge, MA, Sinks and Sustainability

    Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19(15):3038–3051

    Article  PubMed  Google Scholar 

  • Luque S, Saura S, Fortin M-J (2012) Landscape connectivity analysis for conservation: insights from combining new methods with ecological and genetic data. Landscape Ecol 27:153–157

    Article  Google Scholar 

  • Mackenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84(8):2200–2207

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18(4):189–197

    Article  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7(5):639–655

    Article  PubMed  CAS  Google Scholar 

  • Martin Taylor S (2009) Transformative ocean science through the VENUS and NEPTUNE Canada ocean observing systems. Nucl Instrum Methods Phys Res, Sect A 602(1):63–67

    Article  CAS  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. University of Massachusetts, Amherst

    Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10):2712–2724

    Article  PubMed  Google Scholar 

  • Miller JH, Page SE (2007) Complex adaptive systems: an introduction to computational models of social life. Princeton University Press, Princeton

    Google Scholar 

  • Millspaugh J, Marzluff JM (eds) (2001) Radio tracking and animal populations. Academic Press, Salt Lake City

    Google Scholar 

  • Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22(2):297–307

    Article  PubMed  Google Scholar 

  • Minor ES, Tessel SM, Engelhardt KAM, Lookingbill TR (2009) The role of landscape connectivity in assembling exotic plant communities: a network analysis. Ecology 90(7):1802–1809

    Article  PubMed  Google Scholar 

  • Mitarai S, Siegel DA, Winters KB (2008) A numerical study of stochastic larval settlement in the California Current system. J Mar Syst 69(3–4):295–309

    Article  Google Scholar 

  • Mobley KB (2011) Grandfathering in a new era of parentage analysis. Mol Ecol 20(6):1080–1082

    Article  PubMed  Google Scholar 

  • Moilanen A (2011) On the limitations of graph-theoretic connectivity in spatial ecology and conservation. J Appl Ecol 48:1543–1547

    Article  Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83(4):1131–1145

    Article  Google Scholar 

  • Moilanen A, Wintle BA (2007) The boundary-quality penalty: a quantitative method for approximating species responses to fragmentation in reserve selection. Conserv Biol 21(2):355–364

    Article  PubMed  Google Scholar 

  • Munday P, Leis J, Lough J, Paris C, Kingsford M, Berumen M, Lambrechts J (2009) Climate change and coral reef connectivity. Coral Reefs 28(2):379–395

    Google Scholar 

  • Munro AR, Gillanders BM, Thurstan S, Crook DA, Sanger AC (2009) Transgenerational marking of freshwater fishes with enriched stable isotopes: a tool for fisheries management and research. J Fish Biol 75(3):668–684

    Article  PubMed  CAS  Google Scholar 

  • Musyl MK, Domeier ML, Nasby-Lucas N, Brill RW, McNaughton LM, Swimmer JY, Lutcavage MS, Wilson SG, Galuardi B, Liddle JB (2011) Performance of pop-up satellite archival tags. Mar Ecol Prog Ser 433:1–28

    Google Scholar 

  • Naujokaitis-Lewis IR, Curtis JMR, Arcese P, Rosenfeld J (2009) Sensitivity analyses of spatial population viability analysis models for species at risk and habitat conservation planning. Conserv Biol 23(1):225–229

    Article  PubMed  Google Scholar 

  • Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5(8):429–436

    Google Scholar 

  • Ogryczak W, Wierzbicki A, Milewski M (2008) A multi-criteria approach to fair and efficient bandwidth allocation. Omega 36(3):451–463

    Article  Google Scholar 

  • Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: generalizing degree and shortest paths. Soc Netw 32(3):245–251

    Article  Google Scholar 

  • Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma RK, Hedrick PW (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26(4):177–187

    Article  PubMed  CAS  Google Scholar 

  • Ovaskainen O (2004) Habitat-specific movement parameters estimated using mark-recapture data and a diffusion model. Ecology 85(1):242–257

    Article  Google Scholar 

  • Ovaskainen O (2008) Analytical and numerical tools for diffusion-based movement models. Theor Popul Biol 73(2):198–211

    Article  PubMed  Google Scholar 

  • Ovaskainen O, Luoto M, Ikonen I, Rekola H, Meyke E, Kuussaari M (2008a) An empirical test of a diffusion model: predicting clouded apollo movements in a novel environment. Am Nat 171(5):610–619

    Article  PubMed  Google Scholar 

  • Ovaskainen O, Rekola H, Meyke E, Arjas E (2008b) Bayesian methods for analyzing movements in heterogeneous landscapes from mark-recapture data. Ecology 89(2):542–554

    Article  PubMed  Google Scholar 

  • Ovaskainen O, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin AP, Niitepõld K, Hanski I (2008c) Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance. PNAS 105(49):19090–19095

    Google Scholar 

  • Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818

    Article  PubMed  CAS  Google Scholar 

  • Paris CB, Chérubin LM, Cowen RK (2007) Surfing, spinning, or diving from reef to reef: effects on population connectivity. Mar Ecol Prog Ser 347:285–300

    Article  Google Scholar 

  • Parker PG, Snow AA, Schug MD, Booton GC, Fuerst PA (1998) What molecules can tell us about populations: choosing and using a molecular marker. Ecology 79(2):361–382

    Google Scholar 

  • Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landscape Ecol 21(7):959–967

    Article  Google Scholar 

  • Patterson TA, Evans K, Carter TI, Gunn JS (2008a) Movement and behaviour of large southern bluefin tuna (Thunnus maccoyii) in the Australian region determined using pop-up satellite archival tags. Fish Oceanogr 17(5):352–367

    Article  Google Scholar 

  • Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008b) State-space models of individual animal movement. Trends Ecol Evol 23(2):87–94

    Article  PubMed  Google Scholar 

  • Pauli JN, Ben-David M, Buskirk SW, Depue JE, Smith WP (2009) An isotopic technique to mark mid-sized vertebrates non-invasively. J Zool 278(2):141–148

    Article  Google Scholar 

  • Pineda J, Hare JA, Sponaugle S (2007) Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20(3):22–39

    Article  Google Scholar 

  • Pinsky ML, Montes HR, Palumbi SR (2010) Using isolation by distance and effective density to estimate dispersal scales in anemonefish. Evolution 64:2688–2700

    Article  PubMed  Google Scholar 

  • Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. PNAS 106:5693–5697

    Article  PubMed  CAS  Google Scholar 

  • Porter J, Arzberger P, Braun H-W, Bryant P, Gage S, Hansen T, Hanson P, Lin C-C, Lin F-P, Kratz T, Michener W, Shapiro S, Williams T (2005) Wireless sensor networks for ecology. Bioscience 55(7):561–572

    Google Scholar 

  • Pressey RL, Cabeza M, Watts ME, Cowling RM, Wilson KA (2007) Conservation planning in a changing world. Trends Ecol Evol 22(11):583–592

    Article  PubMed  Google Scholar 

  • Pringle C (2003) The need for a more predictive understanding of hydrologic connectivity. Aqua Conserv Mar Freshw Ecosyst 13(6):467–471

    Article  Google Scholar 

  • Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20(6):345–353

    Article  PubMed  Google Scholar 

  • Raeymaekers JAM, Maes GE, Geldof S, Hontis I, Nackaerts K, Volckaert FAM (2008) Modeling genetic connectivity in sticklebacks as a guideline for river restoration. Evol Appl 1(3):475–488

    Article  Google Scholar 

  • Randall LA, Diehl RH, Wilson BC, Barrow WC Jr, Jeske CW (2011) Potential use of weather radar to study movements of wintering waterfowl. J Wildl Manag 75(6):1324–1329

    Article  Google Scholar 

  • Ray N (2005) PATHMATRIX: a geographical information system tool to compute effective distances among samples. Mol Ecol Notes 5(1):177–180

    Article  Google Scholar 

  • Rayfield B, Fortin M-J, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92(4):847–858

    Article  PubMed  Google Scholar 

  • Recio MR, Mathieu R, Denys P, Sirguey P, Seddon PJ (2011) Lightweight GPS-tags, one giant leap for wildlife tracking? An assessment approach. PLoS ONE 6(12):e28225

    Article  PubMed  CAS  Google Scholar 

  • Roberts JJ, Best BD, Dunn DC, Treml EA, Halpin PN (2010) Marine geospatial ecology tools: an integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++. Environ Model Softw 25(10):1197–1207

    Article  Google Scholar 

  • Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol Evol 19(5):256–263

    Article  PubMed  Google Scholar 

  • Rubio L, Saura S (2012) Assessing the importance of individual habitat patches as irreplaceable connecting elements: an analysis of simulated and real landscape data. Ecol Complex 11:28–37

    Article  Google Scholar 

  • Rutz C, Hays GC (2009) New frontiers in biologging science. Biol Lett 5(3):289–292

    Article  PubMed  Google Scholar 

  • Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S (2009) Estimating connectivity in marine populations: an empirical evaluation of assignment tests and parentage analysis under different gene flow scenarios. Mol Ecol 18(8):1765–1776

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Pressey RL, Faith DP et al (2006) Biodiversity conservation planning tools: present status and challenges for the future. Annu Rev Environ Resour 31:123–159

    Article  Google Scholar 

  • Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscapte conservation planning: comparison with existing indices and application to a case study. Landsc Urb Plan 83:91–103

    Article  Google Scholar 

  • Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33(3):523–537

    Google Scholar 

  • Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24(1):135–139

    Article  Google Scholar 

  • Selkoe KA, Henzler CM, Gaines SD (2008) Seascape genetics and the spatial ecology of marine populations. Fish Fish 9(4):363–377

    Article  Google Scholar 

  • Slone DH (2011) Increasing accuracy of dispersal kernels in grid-based population models. Ecol Model 222(3):573–579

    Article  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19(17):3496–3514

    Article  PubMed  Google Scholar 

  • Sutherland WJ (ed) (2006) Ecological census techniques: a handbook. Cambridge University Press, Cambridge

    Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68(3):571–573

    Article  Google Scholar 

  • Thorrold SR, Zacherl DC, Levin LA (2007) Population connectivity and larval dispersal using geochemical signatures in calcified structures. Oceanography 20(3):80–89

    Article  Google Scholar 

  • Treml EA, Halpin PN (in press) Marine population connectivity identifies ecological neighbors for conservation planning in the Coral Triangle. Cons Lett. doi:10.1111/j.1755-263X.2012.00260.x

  • Treml EA, Halpin PN, Urban DL, Pratson LF (2008) Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landscape Ecol 23(S1):19–36

    Google Scholar 

  • Tsafrir D, Tsafrir I, Ein-Dor L, Zuk O, Notterman DA, Domany E (2005) Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices. Bioinformatics 21(10):2301–2308

    Article  PubMed  CAS  Google Scholar 

  • Tsechpenakis G, Guigand C, Cowen RK (2007) Image analysis techniques to accompany a new in situ Ichthyoplankton imaging system. In: OCEANS 2007—Europe, pp 1–6

  • Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18(6):306–314

    Article  Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82(5):1205–1218

    Article  Google Scholar 

  • Urban DL, Minor ES, Treml EA, Schick RS (2009) Graph models of habitat mosaics. Ecol Lett 12(3):260–273

    Article  PubMed  Google Scholar 

  • Urbano F, Cagnacci F, Calenge C, Dettki H, Cameron A, Neteler M (2010) Wildlife tracking data management: a new vision. Phil Trans R Soc Lond B 365(1550):2177–2185

    Article  Google Scholar 

  • Van Teeffelen AJA, Ovaskainen O (2007) Can the cause of aggregation be inferred from species distributions? Oikos 116(1):4–16

    Article  Google Scholar 

  • Visconti P, Elkin C (2009) Using connectivity metrics in conservation planning—when does habitat quality matter? Divers Distrib 15(4):602–612

    Article  Google Scholar 

  • Wang A, Afshar P, Wang H (2008) Complex stochastic systems modelling and control via iterative machine learning. Neurocomputing 71(13–15):2685–2692

    Article  Google Scholar 

  • Wang K, Franklin SE, Guo X, Cattet M (2010) Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists. Sensors 10:9647–9667

    Article  PubMed  Google Scholar 

  • Waples RS, Gaggiotti OE (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  PubMed  CAS  Google Scholar 

  • Wasserman TN, Cushman SA, Shirk AS, Landguth EL, Littell JS (2012) Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. Landscape Ecol 27:211–225

    Article  Google Scholar 

  • Watts ME, Ball IR, Stewart RS, Klein CJ, Wilson K, Steinback C, Lourival R, Kircher L, Possingham HP (2009) Marxan with zones: software for optimal conservation based land- and sea-use zoning. Environ Model Softw 24(12):1513–1521

    Google Scholar 

  • Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. Trends Ecol Evol 17(2):76–83

    Article  Google Scholar 

  • West JB, Bowen GJ, Cerling TE, Ehleringer JR (2006) Stable isotopes as one of nature’s ecological recorders. Trends Ecol Evol 21(7):408–414

    Article  PubMed  Google Scholar 

  • White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ (2010) Ocean currents help explain population genetic structure. Proc R Soc B Biol Sci 277(1688):1685–1694

    Article  Google Scholar 

  • Williamson David H, Jones GP, T SR, Frisch AJ (2009) Transgenerational marking of marine fish larvae: stable-isotope retention, physiological effects and health issues. J Fish Biol 74(4):891–905

    Article  CAS  Google Scholar 

  • Woods RJ, Macdonald JI, Crook DA, Schmidt DJ, Hughes JM (2010) Contemporary and historical patterns of connectivity among populations of an inland river fish species inferred from genetics and otolith chemistry. Can J Fish Aquat Sci 67:1098–1115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.K. would like to thank Bob Pressey and Program 6 (Conservation Planning) of the ARC Centre of Excellence for Coral Reef Studies and the Australian Institute of Marine Science for providing financial support for this work. He also thanks Stephanie Januchowski-Hartley, Tom Brewer, Claire Paris and Bill Laurance for their input on draft versions of the manuscript. Ideas developed during conversations with Hugo Harrison also contributed significantly to the population genetics section, and several key ideas were generated during discussions with Bob Warner, particularly regarding the importance of demographic effects. A.M. thanks the ERC grant StG 260393—GEDA and the Academy of Finland Centre of Excellence Programme 2012-2017 for support. Funding for E.T. was provided by Australian Research Council grant DP0878306, and a World Wildlife Fund Kathryn Fuller Science for Nature Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnathan T. Kool.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kool, J.T., Moilanen, A. & Treml, E.A. Population connectivity: recent advances and new perspectives. Landscape Ecol 28, 165–185 (2013). https://doi.org/10.1007/s10980-012-9819-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-012-9819-z

Keywords

Navigation