Abstract
In this paper, we propose in a Hilbertian setting a second-order time-continuous dynamic system with fast convergence guarantees to solve structured convex minimization problems with an affine constraint. The system is associated with the augmented Lagrangian formulation of the minimization problem. The corresponding dynamics brings into play three general time-varying parameters, each with specific properties, and which are, respectively, associated with viscous damping, extrapolation and temporal scaling. By appropriately adjusting these parameters, we develop a Lyapunov analysis which provides fast convergence properties of the values and of the feasibility gap. These results will naturally pave the way for developing corresponding accelerated ADMM algorithms, obtained by temporal discretization.


Similar content being viewed by others
Notes
Actually, convexity is not needed here.
Again, convexity is superfluous here.
References
Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38(4), 1102–1119 (2000). https://doi.org/10.1137/S0363012998335802
Alvarez, F., Attouch, H., Bolte, J., Redont, P.: A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics. J. Math. Pures Appl. (9) 81(8), 747–779 (2002). https://doi.org/10.1016/S0021-7824(01)01253-3
Apidopoulos, V., Aujol, J.F., ossal, C.: Convergence rate of inertial forward-backward algorithm beyond Nesterov’s rule. Math. Program. 180(1–2, Ser. A), 137–156 (2020). https://doi.org/10.1007/s10107-018-1350-9
Attouch, H.: Variational convergence for functions and operators. Applicable mathematics series. Pitman Advanced Publishing Program (1984). https://books.google.fr/books?id=oxGoAAAAIAAJ
Attouch, H.: Fast inertial proximal ADMM algorithms for convex structured optimization with linear constraint. Minimax Theory Appl. 6(1), 1–24 (2021)
Attouch, H., Balhag, A., Chbani, Z., Riahi, H.: Fast convex optimization via inertial dynamics combining viscous and hessian-driven damping with time rescaling. Evolution Equations & Control Theory (2021). http://aimsciences.org//article/id/92767e45-ae6f-4ff2-9c62-d7ead2d77844
Attouch, H., Cabot, A.: Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity. J. Differ Equ. 263(9), 5412–5458 (2017). https://doi.org/10.1016/j.jde.2017.06.024
Attouch, H., Cabot, A.: Convergence rates of inertial forward-backward algorithms. SIAM J. Optim. 28(1), 849–874 (2018). https://doi.org/10.1137/17M1114739
Attouch, H., Cabot, A., Chbani, Z., Riahi, H.: Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient. Evol. Equ. Control Theory 7(3), 353–371 (2018). https://doi.org/10.3934/eect.2018018
Attouch, H., Chbani, Z., Fadili, J., Riahi, H.: First-order optimization algorithms via inertial systems with hessian driven damping. Math. Program. (2020). https://doi.org/10.1007/s10107-020-01591-1
Attouch, H., Chbani, Z., Peypouquet, J., Redont, P.: Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity. Math. Program. 168(1–2, Ser. B), 123–175 (2018). https://doi.org/10.1007/s10107-016-0992-8
Attouch, H., Chbani, Z., Riahi, H.: Fast proximal methods via time scaling of damped inertial dynamics. SIAM J. Optim. 29(3), 2227–2256 (2019). https://doi.org/10.1137/18M1230207
Attouch, H., Chbani, Z., Riahi, H.: Rate of convergence of the Nesterov accelerated gradient method in the subcritical case \(\alpha \le 3\). ESAIM Control Optim. Calc. Var. 25(2), 34 (2019). https://doi.org/10.1051/cocv/2017083
Attouch, H., Chbani, Z., Riahi, H.: Fast convex optimization via a third-order in time evolution equation. Optimization (2020). Preprint available at hal-02432351. https://doi.org/10.1080/02331934.2020.1764953
Attouch, H., Chbani, Z., Riahi, H.: Fast convex optimization via time scaling of damped inertial gradient dynamics. Pure and Applied Functional Analysis (2020). To appear
Attouch, H., Czarnecki, M.O., Peypouquet, J.: Coupling forward-backward with penalty schemes and parallel splitting for constrained variational inequalities. SIAM J. Optim. 21(4), 1251–1274 (2011). https://doi.org/10.1137/110820300
Attouch, H., Goudou, X., Redont, P.: The heavy ball with friction method. I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system. Commun. Contemp. Math. 2(1), 1–34 (2000). https://doi.org/10.1142/S0219199700000025
Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forward-backward method is actually faster than \(1/k^2\). SIAM J. Optim. 26(3), 1824–1834 (2016). https://doi.org/10.1137/15M1046095
Attouch, H., Peypouquet, J.: Convergence of inertial dynamics and proximal algorithms governed by maximally monotone operators. Math. Program. 174(1–2, Ser. B), 391–432 (2019). https://doi.org/10.1007/s10107-018-1252-x
Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward-backward algorithm for convex minimization. SIAM J. Optim. 24(1), 232–256 (2014). https://doi.org/10.1137/130910294
Attouch, H., Peypouquet, J., Redont, P.: Fast convex optimization via inertial dynamics with Hessian driven damping. J. Differ. Equ. 261(10), 5734–5783 (2016). https://doi.org/10.1016/j.jde.2016.08.020
Attouch, H., Soueycatt, M.: Augmented Lagrangian and proximal alternating direction methods of multipliers in Hilbert spaces. Applications to game, PDE’s and control. Pac. J. Optim. 5(1), 17–37 (2009)
Aujol, J.F., Dossal, C.: Stability of over-relaxations for the forward-backward algorithm, application to FISTA. SIAM J. Optim. 25(4), 2408–2433 (2015). https://doi.org/10.1137/140994964
Bauschke, H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. CMS Books in Mathematics. Springer, New York (2017)
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009). https://doi.org/10.1137/080716542
Boţ, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1(1), 29–49 (2016)
Boţ, R.I., Csetnek, E.R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171(2), 600–616 (2016). https://doi.org/10.1007/s10957-015-0730-z
Boţ, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015). https://doi.org/10.1016/j.amc.2015.01.017
Boţ, R.I., Csetnek, E.R., László, S.C.: Second-order dynamical systems with penalty terms associated to monotone inclusions. Anal. Appl. (Singap.) 16(5), 601–622 (2018). https://doi.org/10.1142/S0219530518500021
Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50)
Chambolle, A., Dossal, C.: On the convergence of the iterates of the “fast iterative shrinkage/thresholding algorithm”. J. Optim. Theory Appl. 166(3), 968–982 (2015). https://doi.org/10.1007/s10957-015-0746-4
Davis, D., Yin, W.: Convergence rate analysis of several splitting schemes. In: Splitting methods in communication, imaging, science, and engineering, Sci. Comput., pp. 115–163. Springer, Cham (2016)
Davis, D., Yin, W.: Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions. Math. Oper. Res. 42(3), 783–805 (2017). https://doi.org/10.1287/moor.2016.0827
Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7(3), 1588–1623 (2014). https://doi.org/10.1137/120896219
Haraux, A.: Systèmes dynamiques dissipatifs et applications, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 17. Masson, Paris (1991)
He, X., Hu, R., Fang, Y.: Convergence rates of inertial primal-dual dynamical methods for separable convex optimization problems. arXiv:2007.12428 (2020)
Kang, M., Kang, M., Jung, M.: Inexact accelerated augmented Lagrangian methods. Comput. Optim. Appl. 62(2), 373–404 (2015). https://doi.org/10.1007/s10589-015-9742-8
Kang, M., Yun, S., Woo, H., Kang, M.: Accelerated Bregman method for linearly constrained \(\ell _1\)-\(\ell _2\) minimization. J. Sci. Comput. 56(3), 515–534 (2013). https://doi.org/10.1007/s10915-013-9686-z
May, R.: Asymptotic for a second-order evolution equation with convex potential and vanishing damping term. Turkish J. Math. 41(3), 681–685 (2017). https://doi.org/10.3906/mat-1512-28
Michiels, W., Vyhlídal, T., Huijberts, H., Nijmeijer, H.: Stabilizability and stability robustness of state derivative feedback controllers. SIAM J. Control Optim. 47(6), 3100–3117 (2009). https://doi.org/10.1137/070697136
Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1, Ser. B), 125–161 (2013). https://doi.org/10.1007/s10107-012-0629-5
Nesterov, Y.E.: A method for solving the convex programming problem with convergence rate \(O(1/k^{2})\). Dokl. Akad. Nauk SSSR 269(3), 543–547 (1983)
Patrinos, P., Stella, L., Bemporad, A.: Douglas-Rachford splitting: Complexity estimates and accelerated variants. In: 53rd IEEE Conference on Decision and Control, pp. 4234–4239 (2014). https://doi.org/10.1109/CDC.2014.7040049
Pejcic, I., Jones, C.N.: Accelerated ADMM based on accelerated Douglas-Rachford splitting. In: European Control Conference (ECC), pp. 1952–1957. Aalborg, Denmark (2016)
Polyak, B.T.: Some methods of speeding up the convergence of iterative methods. Ž. Vyčisl. Mat i Mat. Fiz. 4, 791–803 (1964)
Polyak, B.T.: Introduction to optimization. Translations Series in Mathematics and Engineering. Optimization Software Inc, Publications Division, New York, : Translated from the Russian. With a foreword by Dimitri P, Bertsekas (1987)
Poon, C., Liang, J.: Trajectory of alternating direction method of multipliers and adaptive acceleration. In: 33rd Conference on Neural Information Processing Systems (NeurIPS). Vancouver, Canada (2019)
Rockafellar, R.T.: Monotone operators associated with saddle-functions and minimax problems. In: Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968), pp. 241–250. Amer. Math. Soc., Providence, R.I. (1970)
Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976). https://doi.org/10.1287/moor.1.2.97
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976). https://doi.org/10.1137/0314056
Shi, B., Du, S.S., Jordan, M.I., Su, W.J.: Understanding the acceleration phenomenon via high-resolution differential equations. arXiv:2440124 (2018)
Su, W., Boyd, S., Candès, E.J.: A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights. J. Mach. Learn. Res. 17(153), 43 (2016)
Wilson, A.C., Recht, B., Jordan, M.I.: A lyapunov analysis of momentum methods in optimization. arXiv:1611.02635 (2016)
Zeng, X., Lei, J., Chen, J.: Dynamical primal-dual accelerated method with applications to network optimization. arXiv:1912.03690 (2019)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Attouch, H., Chbani, Z., Fadili, J. et al. Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics. J Optim Theory Appl 193, 704–736 (2022). https://doi.org/10.1007/s10957-021-01859-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-021-01859-2
Keywords
- Augmented Lagrangian
- ADMM
- Damped inertial dynamics
- Convex constrained minimization
- Convergence rates
- Lyapunov analysis
- Nesterov accelerated gradient method
- Temporal scaling