Convergence Rate of Descent Method with New Inexact Line-Search on Riemannian Manifolds | Journal of Optimization Theory and Applications Skip to main content
Log in

Convergence Rate of Descent Method with New Inexact Line-Search on Riemannian Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose the descent method with new inexact line-search for unconstrained optimization problems on Riemannian manifolds. The global convergence of the proposed method is established under some appropriate assumptions. We further analyze some convergence rates, namely R-linear convergence rate, superlinear convergence rate and quadratic convergence rate, of the proposed descent method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7, 303–330 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Math., vol. 33. Amer. Math. Soc, Providence (2001)

    MATH  Google Scholar 

  3. Chavel, I.: Riemannian Geometry—A Modern Introduction. Cambridge University Press, London (1993)

    MATH  Google Scholar 

  4. da Cruz Neto, J.X., de Lima, L.L., Oliveira, P.R.: Geodesic algorithms in Riemannian geometry. Balkan J. Geom. Appl. 3(2), 89–100 (1998)

    MathSciNet  MATH  Google Scholar 

  5. da Cruz Neto, J.X., Ferreira, O.P., Lucambio Perez, L.R.: A proximal regularization of the steepest descent method in Riemannian manifolds. Balkan J. Geom. Appl. 4(2), 1–8 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Huang, W., Gallivan, K.A., Absil, P.A.: A Broyden class of quasi-newton methods for Riemannian optimization. SIAM J. Optim. 25, 1660–1685 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Klingenberg, W.: A Course in Differential Geometry. Springer, Berlin (1978)

    Book  MATH  Google Scholar 

  8. Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71, 5695–5706 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, C., Mordukhovich, B.S., Wang, J.H., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21, 1523–1560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control Optim. 50, 2486–2514 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, X.B., Zhou, L.W., Huang, N.J.: Gap functions and global error bounds for generalized mixed variational inequalities on Hadamard manifolds. J. Optim. Theory Appl. 168(3), 830–849 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rapcsák, T.: Smooth Nonlinear Optimization in \({\mathbb{R}}^{n}\). Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  13. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22(2), 596–627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  15. Yang, Y.: Globally convergent optimization algorithms on Riemannian manifolds: uniform framework for unconstrained and constrained optimization. J. Optim. Theory Appl. 132, 245–265 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer, New York (1999)

    Google Scholar 

  17. Shi, Z.J., Shen, J.: Convergence of descent method with new line search. J. Appl. Math. Comput. 20, 239–254 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16, 1–3 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wolfe, P.: Convergence conditions for ascent methods. SIAM Rev. 11, 226–235 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shi, Z.J.: Convergence of quasi-Newton method with new inexact line search. J. Math. Anal. Appl. 315, 120–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smith, S.T.: Optimization techniques on Riemannian manifolds: hamiltonian and gradient flows. Algorithm Control 3, 113–136 (1994)

    Google Scholar 

  22. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  23. Ferreira, O.P., Svaiter, B.F.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complex. 18, 304–329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Adler, R.L., Dedieu, J.P., Malajovich, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geodesic model for the human spine. IMA J. Numer. Anal. 22, 359–390 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dedieu, J.P., Priouret, P., Malajovich, G.: Newton’s method on Riemannian manifolds: covariant alpha theory. IMA J. Numer. Anal. 23, 395–419 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, C., Wang, J.H.: Newton’s method for sections on Riemannian manifolds: generalized covariant \(\alpha \)-theory. J. Complex. 24, 423–451 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, C., Wang, J.H.: Convergence of the Newton method and uniqueness of zeros of vector fields on Riemannian manifolds. Sci. China Math. 48, 1465–1479 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Brace, I., Manton, J.H.: An improved BFGS-on-manifold algorithm for computing weighted low rank approximations. In: Proceeding of the 17th International Symposium on Mathematical Theory of Networks and Systems, pp. 1735–1738 (2006)

  29. Sakai, T.: Riemannian Geometry, Translations of Mathematical Monographs. American Mathematical Society, Providence (1996)

    Book  Google Scholar 

  30. Shub, M.: Some remarks on dynamical systems and numerical analysis. In: Lara-Carrero, L., Lwowicz, J. (eds.) Dynamical Systems and Partial Differential Equations: Proceedings of VII ELAM Caracas, pp. 69–92. Equinoccio Universidad Simon Bolivar (1986)

  31. Huang, W.: Optimization algorithms on Riemannian manifolds with applications. Ph.D. Thesis, Department of Mathematics, Florida State University, Tallahassee, FL (2013)

  32. Ortega, J.W., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (2003)

    MATH  Google Scholar 

  33. do Carmo, M.P.: Riemannian Geometry, Mathematics: Theory Applications. Birkhäuser, Boston (1992)

    Book  Google Scholar 

  34. Huang, W., Absil, P.A., Gallivan, K.A.: A Riemanian symmetric rank-one trust-region method. Math. Program. 150, 179–216 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the referees for their valuable suggestions and comments to improve this paper. In this paper, the second author was supported by the National Natural Science Foundation of China (11671282), the third author was supported by a research Grant of DST-SERB No. EMR/2016/005124 and the fourth author was partially supported by the Grant MOST 105-2115-M-039-002-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qamrul Hasan Ansari.

Additional information

Communicated by Sándor Zoltán Németh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xb., Huang, Nj., Ansari, Q.H. et al. Convergence Rate of Descent Method with New Inexact Line-Search on Riemannian Manifolds. J Optim Theory Appl 180, 830–854 (2019). https://doi.org/10.1007/s10957-018-1390-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1390-6

Keywords

Mathematics Subject Classification

Navigation