Abstract
This paper is devoted to the analysis of a bilinear optimal control problem subject to the Fokker–Planck equation. The control function depends on time and space and acts as a coefficient of the advection term. For this reason, suitable integrability properties of the control function are required to ensure well posedness of the state equation. Under these low regularity assumptions and for a general class of objective functionals, we prove the existence of optimal controls. Moreover, for common quadratic cost functionals of tracking and terminal type, we derive the system of first-order necessary optimality conditions.
Similar content being viewed by others
Notes
The probability flux describes the flow of probability in terms of probability per unit time per unit area.
References
Kolmogoroff, A.: Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104(1), 415–458 (1931). doi:10.1007/BF01457949
Gardiner, C.: Stochastic Methods. A Handbook for the Natural and Social Sciences. Springer Series in Synergetics, 4th edn. Springer, Berlin (2009)
Horsthemke, W., Lefever, R.: Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology. Springer Series in Synergetics, vol. 15. Springer, Berlin (1984)
Le Bris, C., Lions, P.L.: Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients. Commun. Partial Differ. Equ. 33(7–9), 1272–1317 (2008). doi:10.1080/03605300801970952
Figalli, A.: Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254(1), 109–153 (2008). doi:10.1016/j.jfa.2007.09.020
Porretta, A.: Weak solutions to Fokker–Planck equations and mean field games. Arch. Ration. Mech. Anal. 216(1), 1–62 (2015). doi:10.1007/s00205-014-0799-9
Brockett, R.: New issues in the mathematics of control. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited—2001 and Beyond, pp. 189–219. Springer, Berlin (2001)
Forbes, M.G., Forbes, J.F., Guay, M.: Regulating discrete-time stochastic systems: focusing on the probability density function. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 11(1–2), 81–100 (2004)
Jumarie, G.: Tracking control of nonlinear stochastic systems by using path cross-entropy and Fokker–Planck equation. Int. J. Syst. Sci. 23(7), 1101–1114 (1992). doi:10.1080/00207729208949368
Kárný, M.: Towards fully probabilistic control design. Autom. J. IFAC 32(12), 1719–1722 (1996). doi:10.1016/S0005-1098(96)80009-4
Wang, H.: Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability. IEEE Trans. Autom. Control 44(11), 2103–2107 (1999). doi:10.1109/9.802925
Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Applications of Mathematics, No. 1. Springer, Berlin, New York (1975)
Annunziato, M., Borzì, A.: Optimal control of probability density functions of stochastic processes. Math. Model. Anal. 15(4), 393–407 (2010). doi:10.3846/1392-6292.2010.15.393-407
Annunziato, M., Borzì, A.: A Fokker–Planck control framework for multidimensional stochastic processes. J. Comput. Appl. Math. 237(1), 487–507 (2013). doi:10.1016/j.cam.2012.06.019
Blaquière, A.: Controllability of a Fokker–Planck equation, the Schrödinger system, and a related stochastic optimal control (revised version). Dyn. Control 2(3), 235–253 (1992). doi:10.1007/BF02169515
Porretta, A.: On the planning problem for the mean field games system. Dyn. Games Appl. 4(2), 231–256 (2014). doi:10.1007/s13235-013-0080-0
Addou, A., Benbrik, A.: Existence and uniqueness of optimal control for a distributed-parameter bilinear system. J. Dyn. Control Syst. 8(2), 141–152 (2002). doi:10.1023/A:1015372725255
Fleig, A., Grüne, L., Guglielmi, R.: Some results on model predictive control for the Fokker–Planck equation. In: MTNS 2014: 21st International Symposium on Mathematical Theory of Networks and Systems, July 7–11, 2014, pp. 1203–1206. University of Groningen, The Netherlands (2014)
Aronson, D.G.: Non-negative solutions of linear parabolic equations. Ann. Sc. Norm. Super. Pisa 3(22), 607–694 (1968)
Aronson, D.G., Serrin, J.: Local behavior of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 25, 81–122 (1967)
Casas, E.: Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35(4), 1297–1327 (1997). doi:10.1137/S0363012995283637
Raymond, J.P., Zidani, H.: Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39(2), 143–177 (1999). doi:10.1007/s002459900102
Primak, S., Kontorovich, V., Lyandres, V.: Stochastic methods and their applications to communications. Wiley, Hoboken (2004). doi:10.1002/0470021187
Protter, P.E.: Stochastic Integration and Differential Equations. Stochastic Modelling and Applied Probability, vol. 21. Springer, Berlin (2005). doi:10.1007/978-3-662-10061-5
Risken, H.: The Fokker–Planck Equation. Springer Series in Synergetics, vol. 18, 2nd edn. Springer, Berlin (1989). doi:10.1007/978-3-642-61544-3
Feller, W.: Diffusion processes in one dimension. Trans. Am. Math. Soc. 77, 1–31 (1954)
Gīhman, Ĭ.Ī., Skorohod, A.V.: Stochastic Differential Equations. Springer, New York, Heidelberg (1972). Translated from the Russian by Kenneth Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 72
Tröltzsch, F.: Optimal Control of Partial Differential Equations, Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence (2010). doi:10.1090/gsm/112
Aubin, J.P.: Un théorème de compacité. C. R. Acad. Sci. Paris 256, 5042–5044 (1963)
Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod; Gauthier-Villars, Paris (1969)
Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987). doi:10.1007/BF01762360
Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987). doi:10.1017/CBO9781139171755
Ladyzhenskaya, O., Solonnikov, V., Ural’tseva, N.: Linear and Quasilinear Equations of Parabolic Type. Izdat. ’Nauka’, Moskva (1967)
Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170. Springer, New York, Berlin (1971)
Acknowledgements
The authors wish to express their gratitude to Lars Grüne for suggesting them this very interesting subject and for many helpful comments. They would also like to thank Alfio Borzì for very helpful discussions and the referees for their valuable comments that helped to improve the manuscript. This work was partially supported by the EU under the 7th Framework Program, Marie Curie Initial Training Network FP7-PEOPLE-2010-ITN SADCO, GA 264735-SADCO, by the DFG Project Model Predictive Control for the Fokker–Planck equation, GR 1569/15-1, and by the INdAM through the GNAMPA Research Project 2015 “Analisi e controllo di equazioni a derivate parziali nonlineari.” Most of the results proved in this paper have been announced in a less general setting in a proceedings of the 2nd IFAC Workshop on Control of Systems Governed by Partial Differential Equations.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Roland Herzog.
Rights and permissions
About this article
Cite this article
Fleig, A., Guglielmi, R. Optimal Control of the Fokker–Planck Equation with Space-Dependent Controls. J Optim Theory Appl 174, 408–427 (2017). https://doi.org/10.1007/s10957-017-1120-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-017-1120-5
Keywords
- Bilinear control
- Fokker–Planck equation
- Optimal control theory
- Optimization in Banach spaces
- Probability density function
- Stochastic optimal control