Optimal Controls for Riemann–Liouville Fractional Evolution Systems without Lipschitz Assumption | Journal of Optimization Theory and Applications Skip to main content
Log in

Optimal Controls for Riemann–Liouville Fractional Evolution Systems without Lipschitz Assumption

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, an evolution system with a Riemann–Liouville fractional derivative is proposed and analyzed. With the help of a resolvent technique, a suitable concept of solutions to this system is formulated and the corresponding existence of solutions is demonstrated. Furthermore, without the Lipschitz continuity of the nonlinear term, the optimal control result is derived by setting up minimizing sequences twice. Our work essentially generalizes previous results on optimal controls of all evolution systems. Finally, a simple example is presented to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajlekova, E.: Fractional evolution equations in Banach spaces. Ph.D. Thesis, University Press Facilities, Eindhoven University of Technology (2001)

  2. El-Borai, M.M.: Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals. 14, 433–440 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: Mill, J.V. (ed.) North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

  4. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  5. Tamilalagan, P., Balasubramaniam, P.: Approximate controllability of fractional stochastic differential equations driven by mixed fractional Brownian motion via resolvent operators. Int. J. Control (2016). doi:10.1080/00207179.2016.1219070

    Google Scholar 

  6. Wang, J., Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. Real World Appl. 12, 3642–3653 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta. 45, 765–771 (2006)

    Article  Google Scholar 

  8. Fan, Z.: Existence and regularity of solutions for evolution equations with Riemann–Liouville fractional derivatives. Indag. Math. 25, 516–524 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, Z., Li, X.: Approximate controllability of fractional evolution systems with Riemann–Liouville fractional derivatives. SIAM J. Control Optim. 53, 1920–1933 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, Z., Bin, M.: Approximate controllability of impulsive Riemann–Liouville fractional equations in Banach spaces. J. Int. Equ. Appl. 26, 527–551 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, X., Liu, Z., Bin, M.: Approximate controllability of impulsive fractional neutral evolution equations with Riemann–Liouville fractional derivatives. J. Comput. Anal. Appl. 17, 468–485 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Liu, Y.L., Lv, J.Y.: Existence results for Riemann–Liouville fractional neutral evolution equations. Adv. Differ. Equ. (2014). doi:10.1186/1687-1847-2014-83

  13. Li, K., Peng, J.: Fractional resolvents and fractional evolution equations. Appl. Math. Lett. 25, 808–812 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, M., Wang, Q.: Approximate controllability of Riemann–Liouville fractional differential inclusions. Appl. Math. Comput. 274, 267–281 (2016)

    MathSciNet  Google Scholar 

  15. Zhou, Y., Zhang, L., Shen, X.H.: Existence of mild solutions for fractional evolution equations. J. Int. Equ. Appl. 25, 557–585 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Balasubramaniam, P., Tamilalagan, P.: The solvability and optimal controls for impulsive fractional stochastic integro-differential equations via resolvent operators. J. Optim. Theory Appl. (2016). doi:10.1007/s10957-016-0865-6

    Google Scholar 

  17. Fan, Z., Mophou, G.: Existence and optimal controls for fractional evolution equations. Nonlinear Stud. 20, 161–170 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Fan, Z., Mophou, G.: Existence of optimal controls for a semilinear composite fractional relaxation equation. Rep. Math. Phys. 73, 311–323 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, X., Liu, Z.: The solvability and optimal controls of impulsive fractional semilinear differential equations. Taiwan. J. Math. 19, 433–453 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu, L., Liu, Z., Jiang, W., Luo, J.L.: Solvability and optimal controls for semilinear fractional evolution hemivariational inequalities. Math. Methods Appl. Sci. 39, 5452–5464 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mophou, G.M., N’Guérékata, G.M.: Optimal control of a fractional diffusion equation with state constraints. Comput. Math. Appl. 62, 1413–1426 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pan, X., Li, X., Zhao, J.: Solvability and optimal controls of semilinear Riemann–Liouville fractional differential equations. Abstr. Appl. Anal. (2014). doi:10.1155/2014/216919

  23. Tamilalagan, P., Balasubramaniam, P.: The solvability and optimal controls for fractional stochastic differential equations driven by Poisson jumps via resolvent operators. Appl. Math. Optim. (2016). doi:10.1007/s00245-016-9380-2

    Google Scholar 

  24. Wang, J., Zhou, Y.: A class of fractional evolution equations and optimal controls. Nonlinear Anal. Real World Appl. 12, 262–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, J., Zhou, Y., Medved, M.: On the solvability and optimal controls of fractional integrodifferential evolution systems with infinite delay. J. Optim. Theory Appl. 152, 31–50 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yan, Z., Jia, X.: Optimal controls for fractional stochastic functional differential equations of order \(\alpha \in (1,2]\). Bull. Malays. Math. Sci. Soc. (2016). doi:10.1007/s40840-016-0415-2

    Google Scholar 

  27. Zhu, L.P.: Huang, Q.l.: Nonlinear impulsive evolution equations with nonlocal conditions and optimal controls. Adv. Differ. Equ. (2015). doi:10.1186/s13662-015-0715-0

    Google Scholar 

  28. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  29. Fan, Z.: Characterization of compactness for resolvents and its applications. Appl. Math. Comput. 232, 60–67 (2014)

    MathSciNet  Google Scholar 

  30. Zeidler, E.: Nonlinear Functional Analysis and Its Application II/A. Springer, New York (1990)

    Book  MATH  Google Scholar 

  31. Hu, S., Papageorgious, N.S.: Handbook of Multivalued Analysis (Theory). Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  32. Arendt, W., Batty, C., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems. In: Amann, H., Bourguignon, J.P., Grove, K., Lions, P.L. (eds.) Monographs in Mathematics, vol. 96, 2nd edn. Birkhäuser, Basel (2011)

  33. Balder, E.J.: Necessary and sufficient conditions for \(L_{1}\)-strong-weak lower semicontinuity of integral functionals. Nonlinear Anal. TMA 11, 1399–1404 (1987)

    Article  MATH  Google Scholar 

  34. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063–1077 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and the referees for their constructive comments and suggestions for the improvement in the paper. Furthermore, the work was supported by the NSF of China (11571300, 11271316), the Qing Lan Project of Jiangsu Province of China, the Graduate Research, Innovation Projects in Jiangsu Province (KYLX16-1382) and the High-Level Personnel Support Program of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenbin Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Fan, Z. & Li, G. Optimal Controls for Riemann–Liouville Fractional Evolution Systems without Lipschitz Assumption. J Optim Theory Appl 174, 47–64 (2017). https://doi.org/10.1007/s10957-017-1119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1119-y

Keywords

Mathematics Subject Classification

Navigation