A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds | Journal of Optimization Theory and Applications Skip to main content
Log in

A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a new approach to the proximal point method in the Riemannian context. In particular, without requiring any restrictive assumptions about the sign of the sectional curvature of the manifold, we obtain full convergence for any bounded sequence generated by the proximal point method, in the case that the objective function satisfies the Kurdyka–Lojasiewicz inequality. In our approach, we extend the applicability of the proximal point method to be able to solve any problem that can be formulated as the minimizing of a definable function, such as one that is analytic, restricted to a compact manifold, on which the sign of the sectional curvature is not necessarily constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifold. Optimization 51, 257–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cruz Neto, J.X., Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Convex- and monotone transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35(1), 53–69 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Németh, S.Z.: Five kinds of monotone vector fields. Pure Math. Appl. 9(3–4), 417–428 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Németh, S.Z.: Geodesic monotone vector fields. Lobachevski. J. Math. 5, 13–28 (1999)

    MATH  Google Scholar 

  5. Németh, S.Z.: Monotonicity of the complementary vector field of a nonexpansive map. Acta Math. Hungar. 84(3), 189–197 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Németh, S.Z.: Homeomorphisms and monotone vector fields. Publ. Math. Debrecen 58(4), 707–716 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. London Math. Soc. 79, 663–683 (2009)

    Article  MATH  Google Scholar 

  8. Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31(1), 133–151 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, J.H., López, G., Martín-Márquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146, 691–708 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, C., López, G., Martín-Márquez, V., Wang, J.H.: Resolvents of set-valued monotone vector fields in hadamard manifolds. Set-valued Var. Anal. 19(3), 361–383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tang, G., Huang, N.: Korpelevich’s method for variational inequality problems on Hadamard manifolds. J. Global Optim. 54(3), 493–509 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tang, G., Wang, X., Liu, H.: A projection-type method for variational inequalities on Hadamard manifolds and verification of solution existence. Optimization 64(5), 1081–1096 (2015)

    Article  MathSciNet  Google Scholar 

  13. Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain nonconvex minimization problems. Int. J. Syst. Sci. 12, 989–1000 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaplan, A., Tichatschke, R.: Proximal point methods and nonconvex optimization. J. Global Optim. 13(4), 389–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Spingarn, J.E.: Submonotone mappings and the proximal point algorithm. Numer. Funct. Anal. Optim. 4(2), 123–150 (1981)

    Article  MathSciNet  Google Scholar 

  16. Pennanen, T.: Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27, 170–191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iusem, A.N., Penannen, T., Svaiter, B.F.: Inexact variants of the proximal point algorithm without monotonicity. SIAM J. Optim. 13(4), 1080–1097 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Combettes, P.L., Pennanen, T.: Proximal methods for cohypomonotone operators. SIAM J. Control Optim 43, 731–742 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gárciga-Otero, R., Iusem, A.N.: Proximal methods in reflexive Banach spaces without monotonicity. J. Math. Anal. Appl. 330(1), 433–450 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16(1), 49–69 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73, 564–572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yamaguchi, T.: Locally geodesically quasiconvex functions on complete riemannian manifolds. Trans. Am. Math. Soc. 298(1), 307–330 (1986)

    Article  MATH  Google Scholar 

  23. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization on Manifolds: Methods and Applications. Recent Advances in Optimization and its Applications in Engineering. Springer, New York (2010)

    Google Scholar 

  24. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  25. Rapcsák, T.: Sectional curvature in nonlinear optimization. J. Glob. Optim. 40(1–3), 375–388 (2008)

    Article  MATH  Google Scholar 

  26. Bento, G.C., Melo, J.G.: Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152(3), 773–785 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bento, G.C., Cruz Neto, J.X.: A subgradient method for multiobjective optimization on Riemannian manifolds. J. Optim. Theory Appl. 159(1), 125–137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ledyaev, Y.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. do Carmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992)

    Book  MATH  Google Scholar 

  30. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. Ser. B 116(1–2), 5–16 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Moreno, F.G., Oliveira, P.R., Soubeyran, A.: A proximal algorithm with quasi distance. Application to habit’s formation. Optimization 61(12), 1383–1403 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. Ser. A 137, 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lojasiewicz, S.: Une proprit topologique des sous-ensembles analytiques rels. Les quations aux Drives Partielles, ditions du centre National de la Recherche Scientifique, pp. 87–89 (1963)

  34. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier 48, 769–783 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J. 84, 497–540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bolte, J., Daniilidis, J.A., Lewis, A.: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim 17(4), 1205–1223 (2006)

    Article  MathSciNet  Google Scholar 

  37. Bolte, J., Daniilidis, J.A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Attouch, H., Redont, P., Bolte, J., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems. An approach based on the Kurdyka–Lojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kurdyka, K., Mostowski, T., Parusinski, A.: Proof of the gradient conjecture of R. Thom. Ann. Math. 152, 763–792 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lageman, C.: Convergence of gradient-like dynamical systems and optimization algorithms, Ph.D. Thesis, Universitt Wrzburg (2007)

  41. Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of lojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362, 3319–3363 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Cruz Neto, J.X., Oliveira, P.R., Soares Júnior, P.A., Soubeyran, A.: Learning how to play Nash and alternating minimization method for structured nonconvex problems on Riemannian manifolds. J. Convex Anal. 20, 395–438 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

G. C. Bento was supported in part by CAPES-MES-CUBA 226/2012, FAPEG 201210267000909-05/2012 and CNPq Grants 458479/2014-4, 471815/2012-8, 303732/2011-3, 312077/ 2014-9., J. X. Cruz Neto was partially supported by CNPq GRANT 305462/2014-8, and P. R. Oliveira was supported in part by CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaydston de Carvalho Bento.

Additional information

Communicated by Sándor Zoltán Németh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Bento, G., da Cruz Neto, J.X. & Oliveira, P.R. A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds. J Optim Theory Appl 168, 743–755 (2016). https://doi.org/10.1007/s10957-015-0861-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0861-2

Keywords

Mathematics Subject Classification

Navigation