Abstract
In this paper, we present a new approach to the proximal point method in the Riemannian context. In particular, without requiring any restrictive assumptions about the sign of the sectional curvature of the manifold, we obtain full convergence for any bounded sequence generated by the proximal point method, in the case that the objective function satisfies the Kurdyka–Lojasiewicz inequality. In our approach, we extend the applicability of the proximal point method to be able to solve any problem that can be formulated as the minimizing of a definable function, such as one that is analytic, restricted to a compact manifold, on which the sign of the sectional curvature is not necessarily constant.
Similar content being viewed by others
References
Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifold. Optimization 51, 257–270 (2002)
Cruz Neto, J.X., Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Convex- and monotone transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35(1), 53–69 (2006)
Németh, S.Z.: Five kinds of monotone vector fields. Pure Math. Appl. 9(3–4), 417–428 (1998)
Németh, S.Z.: Geodesic monotone vector fields. Lobachevski. J. Math. 5, 13–28 (1999)
Németh, S.Z.: Monotonicity of the complementary vector field of a nonexpansive map. Acta Math. Hungar. 84(3), 189–197 (1999)
Németh, S.Z.: Homeomorphisms and monotone vector fields. Publ. Math. Debrecen 58(4), 707–716 (2001)
Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. London Math. Soc. 79, 663–683 (2009)
Ferreira, O.P., Pérez, L.R.L., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31(1), 133–151 (2005)
Wang, J.H., López, G., Martín-Márquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146, 691–708 (2010)
Li, C., López, G., Martín-Márquez, V., Wang, J.H.: Resolvents of set-valued monotone vector fields in hadamard manifolds. Set-valued Var. Anal. 19(3), 361–383 (2011)
Tang, G., Huang, N.: Korpelevich’s method for variational inequality problems on Hadamard manifolds. J. Global Optim. 54(3), 493–509 (2012)
Tang, G., Wang, X., Liu, H.: A projection-type method for variational inequalities on Hadamard manifolds and verification of solution existence. Optimization 64(5), 1081–1096 (2015)
Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain nonconvex minimization problems. Int. J. Syst. Sci. 12, 989–1000 (1981)
Kaplan, A., Tichatschke, R.: Proximal point methods and nonconvex optimization. J. Global Optim. 13(4), 389–406 (1998)
Spingarn, J.E.: Submonotone mappings and the proximal point algorithm. Numer. Funct. Anal. Optim. 4(2), 123–150 (1981)
Pennanen, T.: Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27, 170–191 (2002)
Iusem, A.N., Penannen, T., Svaiter, B.F.: Inexact variants of the proximal point algorithm without monotonicity. SIAM J. Optim. 13(4), 1080–1097 (2003)
Combettes, P.L., Pennanen, T.: Proximal methods for cohypomonotone operators. SIAM J. Control Optim 43, 731–742 (2004)
Gárciga-Otero, R., Iusem, A.N.: Proximal methods in reflexive Banach spaces without monotonicity. J. Math. Anal. Appl. 330(1), 433–450 (2007)
Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16(1), 49–69 (2009)
Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73, 564–572 (2010)
Yamaguchi, T.: Locally geodesically quasiconvex functions on complete riemannian manifolds. Trans. Am. Math. Soc. 298(1), 307–330 (1986)
Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization on Manifolds: Methods and Applications. Recent Advances in Optimization and its Applications in Engineering. Springer, New York (2010)
Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)
Rapcsák, T.: Sectional curvature in nonlinear optimization. J. Glob. Optim. 40(1–3), 375–388 (2008)
Bento, G.C., Melo, J.G.: Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152(3), 773–785 (2012)
Bento, G.C., Cruz Neto, J.X.: A subgradient method for multiobjective optimization on Riemannian manifolds. J. Optim. Theory Appl. 159(1), 125–137 (2013)
Ledyaev, Y.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007)
do Carmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992)
Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. Ser. B 116(1–2), 5–16 (2009)
Moreno, F.G., Oliveira, P.R., Soubeyran, A.: A proximal algorithm with quasi distance. Application to habit’s formation. Optimization 61(12), 1383–1403 (2012)
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. Ser. A 137, 91–129 (2013)
Lojasiewicz, S.: Une proprit topologique des sous-ensembles analytiques rels. Les quations aux Drives Partielles, ditions du centre National de la Recherche Scientifique, pp. 87–89 (1963)
Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier 48, 769–783 (1998)
van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J. 84, 497–540 (1996)
Bolte, J., Daniilidis, J.A., Lewis, A.: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim 17(4), 1205–1223 (2006)
Bolte, J., Daniilidis, J.A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)
Attouch, H., Redont, P., Bolte, J., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems. An approach based on the Kurdyka–Lojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)
Kurdyka, K., Mostowski, T., Parusinski, A.: Proof of the gradient conjecture of R. Thom. Ann. Math. 152, 763–792 (2000)
Lageman, C.: Convergence of gradient-like dynamical systems and optimization algorithms, Ph.D. Thesis, Universitt Wrzburg (2007)
Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of lojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362, 3319–3363 (2010)
Cruz Neto, J.X., Oliveira, P.R., Soares Júnior, P.A., Soubeyran, A.: Learning how to play Nash and alternating minimization method for structured nonconvex problems on Riemannian manifolds. J. Convex Anal. 20, 395–438 (2013)
Acknowledgments
G. C. Bento was supported in part by CAPES-MES-CUBA 226/2012, FAPEG 201210267000909-05/2012 and CNPq Grants 458479/2014-4, 471815/2012-8, 303732/2011-3, 312077/ 2014-9., J. X. Cruz Neto was partially supported by CNPq GRANT 305462/2014-8, and P. R. Oliveira was supported in part by CNPq.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Sándor Zoltán Németh.
Rights and permissions
About this article
Cite this article
de Carvalho Bento, G., da Cruz Neto, J.X. & Oliveira, P.R. A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds. J Optim Theory Appl 168, 743–755 (2016). https://doi.org/10.1007/s10957-015-0861-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-015-0861-2