The Nonnegative Zero-Norm Minimization Under Generalized Z-Matrix Measurement | Journal of Optimization Theory and Applications Skip to main content
Log in

The Nonnegative Zero-Norm Minimization Under Generalized Z-Matrix Measurement

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider the zero-norm minimization problem with linear equation and nonnegativity constraints. By introducing the concept of generalized Z-matrix for a rectangular matrix, we show that this zero-norm minimization with such a kind of measurement matrices and nonnegative observations can be exactly solved via the corresponding p-norm minimization with p in the open interval from zero to one. Moreover, the lower bound of sample number for exact recovery is allowed to be the same as the sparsity of the original image or signal by the underlying zero-norm minimization. A practical application in communications is presented, which satisfies the generalized Z-matrix recovery condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

References

  1. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  2. Candés, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MATH  Google Scholar 

  3. Candés, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51, 4203–4215 (2005)

    Article  MATH  Google Scholar 

  4. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51, 34–81 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Davenport, M., Duarte, M., Eldar, Y., Kutyniok, G.: Introduction to compressed sensing. In: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  6. Donoho, D.L., Tanner, J.: Precise undersampling theorems. Proc. IEEE 98, 913–924 (2010)

    Article  Google Scholar 

  7. Harmany, Z.T., Marcia, R.F., Willett, R.M.: Spiral out of convexity: Sparsity-regularized algorithms for photon-limited imaging. In: Bouman, C.A., et al. (eds.) Computational Imaging VIII, San Jose, CA, January 2010. Proc. SPIE-IS&T Electron. Imaging, vol. 7533 (2010)

    Chapter  Google Scholar 

  8. Khajehnejad, M.A., Dimakis, A.G., Xu, W., Hassibi, B.: Sparse recovery of nonnegative signals with minimal expansion. IEEE Trans. Signal Process. 59(1), 196–208 (2011)

    Article  MathSciNet  Google Scholar 

  9. Liu, Y., Dai, Y., Luo, Z.: Joint power and admission control via linear programming deflation. accepted for publication in ICASSP 2012. http://www.icassp2012.org/Papers/ViewPapers.asp?PaperNum=2411

  10. Sheikh, M.A., Sarvotham, S., Milenkovic, O., Baraniuk, R.G.: DNA array decoding from nonlinear measurements by belief propagation. In: IEEE Proceedings of the 14th Workshop on Statistical Signal Processing, Washington, DC, USA, pp. 215–219 (2007)

    Google Scholar 

  11. Ge, D., Jiang, X., Ye, Y.: A note on complexity of l p minimization. Math. Program. 129, 285–299 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227–234 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bruckstein, A.M., Elad, M., Zibulevsky, M.: On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations. IEEE Trans. Inf. Theory 54, 4813–4820 (2008)

    Article  MathSciNet  Google Scholar 

  14. Donoho, D.L., Tanner, J.: Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. USA 102, 9446–9451 (2005)

    Article  MathSciNet  Google Scholar 

  15. Donoho, D.L., Tanner, J.: Counting the faces of randomly-projected hypercubes and orthants with applications. Discrete Comput. Geom. 43, 522–541 (2008)

    Article  MathSciNet  Google Scholar 

  16. Juditsky, A., Karzan, F.K., Nemirovski, A.: Verifiable conditions of l 1 recovery for sparse signals with sign restrictions. Math. Program., Ser. B 127, 89–122 (2011)

    Article  MATH  Google Scholar 

  17. Qin, L.X., Xiu, N.H., Kong, L.C., Li, Y.: Linear Program Relaxation of Sparse Nonnegative Recovery in Compressive Sensing Microarrays. Preprint, Department of Mathematics, Beijing Jiaotong University (2012)

  18. Wang, M., Xu, W., Tang, A.: A unique “nonnegative” solution to an underdetermined systems: from vector to matrices. IEEE Trans. Signal Process. 59(3), 1007–1016 (2011)

    Article  MathSciNet  Google Scholar 

  19. Zhang, Y.: A simple proof for the recoverability of l 1-minimization (II): The nonnegative case. Technical report TR05-10, Department of Computational and Applied Mathematical, Rice University, Houston, TX (2005)

  20. Berman, A., Plemmons, R.J. (eds.): Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)

    MATH  Google Scholar 

  21. Cottle, R.W., Pang, J.S., Stone, R.E. (eds.): The Linear Complementarity Problem. Academic Press, Boston (1992)

    MATH  Google Scholar 

  22. Chen, X.J., Xiang, S.H.: Implicit solution function of P 0 and Z matrix linear complementarity constraints. Math. Program., Ser. A 128, 1–18 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chen, X.J., Xiang, S.H.: Newton iterations in implicit time-stepping scheme for differential linear complementarity systems. Math. Program., Ser. A (2012). doi:10.1007/s10107-012-0527-x

    Google Scholar 

  24. Candés, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Probl. 23(3), 969–985 (2007)

    Article  MATH  Google Scholar 

  25. Do Ba, K., Indyk, P., Price, E., Woodruff, D.: Lower bounds for sparse recovery. In: Proc. 19th Annu. ACM–SIAM Symp. Discrete Algorithms (2010)

    Google Scholar 

  26. Fiedler, M., Ptàk, V.: On matrices with non-positive off-diagonal elements and positive principle minors. Czechoslov. Math. J. 12, 382–400 (1962)

    Google Scholar 

  27. Song, D.C., Feng, Z.X.: Properties of generalized Z-matrices and M-matrices. J. Fushun Petroleum Inst. 23(4), 78–80 (2003)

    Google Scholar 

  28. Fung, G., Mangasarian, O.: Equivalence of minimal l 0- and l p -norm solutions of linear equalities, inequalities and linear programs for sufficiently small p. J. Optim. Theory Appl. 151(1), 1–10 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Basic Research Program of China (2010CB732501), the National Natural Science Foundation of China (11101248), and the State Key Laboratory of Rail Traffic Control and Safety (Contract No. RCS2012ZQ001), Beijing Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyan Luo.

Additional information

Communicated by Vaithilingam Jeyakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Z., Qin, L., Kong, L. et al. The Nonnegative Zero-Norm Minimization Under Generalized Z-Matrix Measurement. J Optim Theory Appl 160, 854–864 (2014). https://doi.org/10.1007/s10957-013-0325-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0325-5

Keywords

Navigation