Abstract
We consider existence and uniqueness properties of a solution to homogeneous cone complementarity problem. Employing an algebraic characterization of homogeneous cones due to Vinberg from the 1960s, we generalize the properties of existence and uniqueness of solutions for a nonlinear function associated with the standard nonlinear complementarity problem to the setting of homogeneous cone complementarity problem. We provide sufficient conditions for a continuous function so that the associated homogeneous cone complementarity problems have solutions. In particular, we give sufficient conditions for a monotone continuous function so that the associated homogeneous cone complementarity problem has a unique solution (if any). Moreover, we establish a global error bound for the homogeneous cone complementarity problem under some conditions.
Similar content being viewed by others
References
Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. I and II. Springer, New York (2003)
Schäfer, U.: A linear complementarity problem with a P-matrix. SIAM Rev. 46, 189–201 (2004)
Gowda, M.S., Sznajder, R., Tao, J.: Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393, 203–232 (2004)
Tao, J., Gowda, M.S.: Some P-properties for nonlinear transformations on Euclidean Jordan algebras. Math. Oper. Res. 30, 985–1004 (2005)
Gowda, M.S., Sznajder, R.: Automorphism invariance of P and GUS properties of linear transformations on Euclidean Jordan algebras. Math. Oper. Res. 31, 109–123 (2006)
Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford University Press, New York (1994)
Koecher, M.: The Minnesota Notes on Jordan Algebras and Their Applications. Springer, Berlin (1999). Edited and annotated by A. Brieg and S. Walcher
Vinberg, E.B.: The theory of convex homogeneous cones. Trans. Mosc. Math. Soc. 12, 340–403 (1963)
Andersson, S.A., Wojnar, G.G.: Wishart distributions on homogeneous cones. J. Theor. Probab. 17, 781–818 (2004)
Chua, C.B.: Relating homogeneous cones and positive definite cones via T-algebras. SIAM J. Optim. 14, 500–506 (2003)
Chua, C.B.: A T-algebraic approach to primal-dual interior-point algorithms. SIAM J. Optim. 20, 503–523 (2009)
Dorfmeister, J.: Inductive construction of homogeneous cones. Trans. Am. Math. Soc. 252, 321–349 (1979)
Dorfmeister, J.: Algebraic description of homogeneous cones. Trans. Am. Math. Soc. 255, 61–89 (1979)
Faybusovich, L.: On Nesterov’s approach to semi-infinite programming. Acta Appl. Math. 74, 195–215 (2002)
Güler, O.: Barrier functions in interior point methods. Math. Oper. Res. 21, 860–885 (1996)
Güler, O., Tunçel, L.: Characterization of the barrier parameter of homogeneous convex cones. Math. Program. A 81, 55–76 (1998)
Ishi, H.: Positive Riesz distributions on homogeneous cones. J. Math. Soc. Jpn. 52, 161–186 (2000)
Ostrogorski, T.: Homogeneous cones and Abelian theorems. Int. J. Math. Math. Sci. 21, 643–652 (1998)
Rothaus, O.S.: The construction of homogeneous convex cones. Ann. Math. 83, 358–376 (1966)
Tunçel, L., Xu, S.: On homogeneous convex cones, the Carathéodory number, and the duality mapping. Math. Oper. Res. 26, 234–247 (2001)
Truong, V.A., Tunçel, L.: Geometry of homogeneous cones: Duality mapping and optimal self concordant barriers. Math. Program. 100, 295–316 (2004)
Vinberg, E.B.: The structure of the group of automorphisms of a homogeneous convex cone. Trans. Mosc. Math. Soc. 13, 63–93 (1965)
Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory I and II. In: Zarantonello, E.H. (eds.) Contribution to Nonlinear Functional Analysis, pp. 237–424. Academic Press, New York (1971)
Chen, B., Harker, P.T.: Smooth approximations to nonlinear complementarity problems. SIAM J. Optim. 7, 403–420 (1997)
Gowda, M.S.: Applications of degree theory to linear complementarity problems. Math. Oper. Res. 18, 868–879 (1993)
Ha, C.D.: Application of degree theory in stability of the complementarity problem. Math. Oper. Res. 12, 368–376 (1987)
Howe, R., Stone, R.: Linear complementarity and the degree of mappings. In: Eaves, B.C., Gould, F.J., Peitgen, H.-Q., Todd, M.J. (eds.) Homotopy Methods and Global Convergence, pp. 179–223. Plenum Press, New York (1983)
Isac, G., Bulavaski, V., Kalashnikov, V.: Exceptional families, topological degree and complementarity problems. J. Glob. Optim. 10, 207–225 (1997)
Zhao, Y.B., Han, J.: Exceptional family of elements for a variational inequality problem and its applications. J. Glob. Optim. 14, 313–330 (1999)
Zhao, Y.B., Li, D.: On a new homotopy continuation trajectory for nonlinear complementarity problems. Math. Oper. Res. 26, 119–146 (2001)
Lloyd, N.G.: Degree Theory. Cambridge University Press, Cambridge (1978)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Guang-ya Chen.
Rights and permissions
About this article
Cite this article
Kong, L., Tunçel, L. & Xiu, N. Existence and Uniqueness of Solutions for Homogeneous Cone Complementarity Problems. J Optim Theory Appl 153, 357–376 (2012). https://doi.org/10.1007/s10957-011-9971-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-011-9971-7