Abstract
We discuss a class of risk-sensitive portfolio optimization problems. We consider the portfolio optimization model investigated by Nagai (SIAM J. Control Optim. 41:1779–1800, 2003). The model by its nature can include fixed income securities as well in the portfolio. Under fairly general conditions, we prove the existence of an optimal portfolio in both finite-horizon and infinite-horizon problems.
Similar content being viewed by others
References
Merton, C.: Life time portfolio selection under uncertainty: The continuous case. Rev. Econ. Stat. 51, 247–257 (1969)
Merton, C.: Optimal consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3, 373–413 (1971)
Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, New York (1998)
Korn, R.: Optimal Portfolios: Stochastic Models for Optimal Investment and Risk Management in Continuous Time. World Scientific, Singapore (1997)
Bielecki, T.R., Pliska, S.R.: Risk-sensitive dynamic asset management. App. Math. Optim. 39, 337–360 (1999)
Bielecki, T.R., Pliska, S.R.: A risk-sensitive intertemporal CAPM, with application to fixed income management. IEEE Trans. Automat. Contr. 49, 420–432 (2004)
Nagai, H.: Optimal strategies for risk-sensitive portfolio optimization problems for general factor models. SIAM J. Control Optim. 41, 1779–1800 (2003)
Fleming, W.H., Sheu, S.J.: Risk-sensitive control and an optimal investment model. Math. Financ. 10, 197–213 (2000)
Fleming, W.H., Sheu, S.J.: Risk-sensitive control and an optimal investment model (II). Ann. Appl. Probab. 12, 730–767 (2002)
Fleming, W.H., Zhang, Q.: Risk-sensitive production planing of a stochastic manufacturing system. SIAM J. Control Optim. 36, 1147–1170 (1998)
Dupuis, P., McEneaney, W.M.: Risk-sensitive and robust escape criteria. SIAM J. Control Optim. 35, 2021–2049 (1997)
Fleming, W.H., McEneaney, W.M.: Risk-sensitive control on an infinite time horizon. SIAM J. Control Optim. 33, 1881–1915 (1995)
Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, New York (1975)
Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Process. Springer, Berlin (1979)
Bensoussan, A.: Stochastic Control by Functional Analysis Methods. Studies in Mathematics and It’s Applications, vol. 11. North-Holland, Amsterdam (1982)
Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1998)
Borkar, V.S.: Optimal Control of Diffusion Processes. Pitman Research Notes in Mathematics Series, vol. 203. Longman, Harlow (1989)
Ladyzenskaya, O.A., Solonikov, V.A., Uralceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. AMS Trans. of Math. Monographs. AMS, Providence (1968)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by F. Zirilli.
Rights and permissions
About this article
Cite this article
Goel, M., Kumar, K.S. Risk-Sensitive Portfolio Optimization Problems with Fixed Income Securities. J Optim Theory Appl 142, 67–84 (2009). https://doi.org/10.1007/s10957-009-9546-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-009-9546-z