Risk-Sensitive Portfolio Optimization Problems with Fixed Income Securities | Journal of Optimization Theory and Applications Skip to main content
Log in

Risk-Sensitive Portfolio Optimization Problems with Fixed Income Securities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We discuss a class of risk-sensitive portfolio optimization problems. We consider the portfolio optimization model investigated by Nagai (SIAM J. Control Optim. 41:1779–1800, 2003). The model by its nature can include fixed income securities as well in the portfolio. Under fairly general conditions, we prove the existence of an optimal portfolio in both finite-horizon and infinite-horizon problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merton, C.: Life time portfolio selection under uncertainty: The continuous case. Rev. Econ. Stat. 51, 247–257 (1969)

    Article  Google Scholar 

  2. Merton, C.: Optimal consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3, 373–413 (1971)

    Article  MathSciNet  Google Scholar 

  3. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, New York (1998)

    MATH  Google Scholar 

  4. Korn, R.: Optimal Portfolios: Stochastic Models for Optimal Investment and Risk Management in Continuous Time. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  5. Bielecki, T.R., Pliska, S.R.: Risk-sensitive dynamic asset management. App. Math. Optim. 39, 337–360 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bielecki, T.R., Pliska, S.R.: A risk-sensitive intertemporal CAPM, with application to fixed income management. IEEE Trans. Automat. Contr. 49, 420–432 (2004)

    Article  MathSciNet  Google Scholar 

  7. Nagai, H.: Optimal strategies for risk-sensitive portfolio optimization problems for general factor models. SIAM J. Control Optim. 41, 1779–1800 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fleming, W.H., Sheu, S.J.: Risk-sensitive control and an optimal investment model. Math. Financ. 10, 197–213 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fleming, W.H., Sheu, S.J.: Risk-sensitive control and an optimal investment model (II). Ann. Appl. Probab. 12, 730–767 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fleming, W.H., Zhang, Q.: Risk-sensitive production planing of a stochastic manufacturing system. SIAM J. Control Optim. 36, 1147–1170 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dupuis, P., McEneaney, W.M.: Risk-sensitive and robust escape criteria. SIAM J. Control Optim. 35, 2021–2049 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fleming, W.H., McEneaney, W.M.: Risk-sensitive control on an infinite time horizon. SIAM J. Control Optim. 33, 1881–1915 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, New York (1975)

    MATH  Google Scholar 

  14. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Process. Springer, Berlin (1979)

    Google Scholar 

  15. Bensoussan, A.: Stochastic Control by Functional Analysis Methods. Studies in Mathematics and It’s Applications, vol. 11. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  16. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1998)

    Google Scholar 

  17. Borkar, V.S.: Optimal Control of Diffusion Processes. Pitman Research Notes in Mathematics Series, vol. 203. Longman, Harlow (1989)

    MATH  Google Scholar 

  18. Ladyzenskaya, O.A., Solonikov, V.A., Uralceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. AMS Trans. of Math. Monographs. AMS, Providence (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Kumar.

Additional information

Communicated by F. Zirilli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goel, M., Kumar, K.S. Risk-Sensitive Portfolio Optimization Problems with Fixed Income Securities. J Optim Theory Appl 142, 67–84 (2009). https://doi.org/10.1007/s10957-009-9546-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-009-9546-z

Keywords

Navigation