Metaheuristics for solving a multi-objective flow shop scheduling problem with sequence-dependent setup times | Journal of Scheduling Skip to main content
Log in

Metaheuristics for solving a multi-objective flow shop scheduling problem with sequence-dependent setup times

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

Industries such as textiles, paints, chemicals, paper, drugs and pharmaceuticals operate as flow shops with sequence-dependent setup times (SDST). The sequence-dependent setup environment is characterised by the dependence of the setup time on the current job and also on the previous job processed on that machine. To further complicate the problem, in most real-life scenarios, decision-makers have to optimise more than one performance measure while scheduling jobs on machines. This work considers such a multi-objective SDST flow shop environment. The objectives considered in the present study are minimisation of makespan and minimisation of mean tardiness. Four metaheuristics, viz. non-dominated sorting genetic algorithm (NSGA) II, hybrid NSGA II, discrete particle swarm optimisation and hybrid discrete particle swarm optimisation, belonging to the category of intelligent optimisation techniques, are developed to obtain a set of Pareto-optimal solutions. The proposed metaheuristics are applied on benchmark SDST flow shop problems and their performance compared using different measures. Analysis of the results reveals that hybrid NSGA II outperforms the other three algorithms for all problem sizes considered in the present research. The results also indicate that hybridisation of the metaheuristics with variable neighbourhood search improves their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Journal of Operational Research,246(2), 345–378.

    Google Scholar 

  • An, Y. J., Kim, Y. D., & Choi, S. W. (2016). Minimizing makespan in a two-machine flowshop with a limited waiting time constraint and sequence dependent setup times. Computers & Operations Research,71(1), 127–136.

    Google Scholar 

  • Benoit, A., Coqblin, M., Nicod, J. M., & Rehn-Sonigo, V. (2016). Optimising memory allocation for multi-stage scheduling including setup times. Journal of Scheduling,19, 641–658.

    Google Scholar 

  • Bianco, L., Dell’Olmo, P., & Giordani, S. (1999). Flow shop no-wait scheduling with sequence dependent setup times and release dates. INFOR: Information Systems and Operational Research, 37(1), 3–19.

    Google Scholar 

  • Bianco, L., Ricciardelli, S., Rinaldi, G., & Sassano, A. (1988). Scheduling tasks with sequence dependent processing times. Naval Research Logistics,35(2), 177–184.

    Google Scholar 

  • Burger, A. P., Jacobs, C. G., Van Vuuren, J. H., & Visagie, S. E. (2015). Scheduling multi-colour print jobs with sequence dependent setup. Journal of Scheduling,18(2), 131–145.

    Google Scholar 

  • Chaiyaratna, N., & Zalzala, A. (1999). Hybridisation of neural networks and genetic algorithms for time-optimal control. In Proceedings of the 1999 Congress on Evolutionary Computation - CEC99 (Vol. 1, pp. 389–396).

  • Ciavotta, M., Minella, G., & Ruiz, R. (2013). Multi-objective sequence dependent setup times permutation flow shop: A new algorithm and comprehensive study. European Journal of Operational Research,227(2), 301–313.

    Google Scholar 

  • Corwin, B. D., & Esogbue, A. O. (1974). Two-machine flow shop scheduling problems with sequence dependent setup times: A dynamic programming approach. Naval Research Logistics Quarterly,21, 515–539.

    Google Scholar 

  • Deb, K. (2005). Multi-objective optimisation using evolutionary algorithms (Student ed.). Hoboken: Wiley.

    Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Google Scholar 

  • Demirkol, E., & Uzsoy, R. (2000). Decomposition methods for re-entrant flow shops with sequence-dependent setup times. Journal of Scheduling,3, 155–177.

    Google Scholar 

  • Dhingra, A., & Chandna, P. (2010). A bi-criteria m machine sequence dependent setup time flow shop using modified heuristic genetic algorithm. International Journal of Engineering, Science and Technology,2(5), 216–225.

    Google Scholar 

  • Diabat, A. (2014). Hybrid algorithm for a vendor managed inventory in a two echelon supply chain. European Journal of Operational Research,238(1), 114–121.

    Google Scholar 

  • Ebrahimi, M., Ghomi, F., & Karimi, B. (2014). Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates. Applied Mathematical Modelling,38(9–10), 2490–2504.

    Google Scholar 

  • Eren, T., & Guner, E. (2006). A bi-criteria scheduling with sequence dependent setup times. Applied Mathematics and Computation,179(1), 378–385.

    Google Scholar 

  • Gajpal, Y., & Rajendran, C. (2006). An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops. International Journal of Production Economics,101, 259–272.

    Google Scholar 

  • Gupta, J. N. D. (1975). A search algorithm for the generalized scheduling problem. Computers & Operations Research,2(2), 83–90.

    Google Scholar 

  • Gupta, J. N. D., & Darrow, W. P. (1986). The two-machine sequence dependent flow shop scheduling problem. European Journal of Operational Research,24(3), 439–446.

    Google Scholar 

  • Hekmatfar, M., Ghomi, S. M. T. F., & Karimi, B. (2011). Two stage re-entrant hybrid flow shop with setup times and the criterion of minimizing makespan. Applied Soft Computing,11, 4530–4539.

    Google Scholar 

  • Huang, S. P. (2010). Using genetic algorithm in two-machine flexible flow shop scheduling with setup times. Journal of Information and Optimisation Sciences,31(1), 87–103.

    Google Scholar 

  • Logendran, R., deSzoeke, P., & Barnard, F. (2006). Sequence dependent group scheduling problems in flexible flow shops. International Journal of Production Economics,102(1), 66–86.

    Google Scholar 

  • Mansouri, S., Hendizadeh, S., & Salmasi, N. (2009). Bi-criteria scheduling of a two machine flow shop with sequence dependent setup time. International Journal of Advanced Manufacturing Technology,40(11), 1216–1226.

    Google Scholar 

  • Meeran, S., & Morshed, M. S. (2012). A hybrid genetic tabu search algorithm for solving job shop scheduling problems: a case study. Journal of Intelligent Manufacturing,23(4), 1063–1078.

    Google Scholar 

  • Mladenovic, N., & Hansen, P. (1997). Variable neighbourhood search. Computers & Operations Research,24(11), 1097–1100.

    Google Scholar 

  • Naderi, B., Zandieh, M., Balagh, A. K. G., & Roshanaei, V. (2009a). An improved simulated annealing for hybrid flow shops with sequence dependent setup and transportation times to minimise total completion times and total tardiness. Expert Systems with Applications,36(6), 9625–9633.

    Google Scholar 

  • Naderi, B., Zandieh, M., & Shirazi, M. A. H. A. (2009b). Modeling and scheduling a case of flexible flow shops: Total weighted tardiness minimisation. Computers & Industrial Engineering,57(4), 1258–1267.

    Google Scholar 

  • Nagano, M. S., Silvaa, A. A., & Lorena, L. A. N. (2014). An evolutionary clustering search for the no-wait flow shop problem with sequence dependent setup times. Expert Systems with Applications,41, 3628–3633.

    Google Scholar 

  • Pan, Q., Tasgetiren, F., & Liang, Y. C. (2008). A discrete particle swarm optimisation algorithm for no-wait flow shop scheduling problem. European Journal of Operational Research,35(9), 2807–2839.

    Google Scholar 

  • Pargar, F., & Zandieh, M. (2012). Bi-criteria SDST hybrid flow shop scheduling with learning effect of setup times: water flow-like algorithm approach. International Journal of Production Research,50(10), 2609–2623.

    Google Scholar 

  • Parthasarathy, S., & Rajendran, C. (1997). An experimental evaluation of heuristics for scheduling in a real-life flow shop with sequence dependent setup times of jobs. International Journal of Production Economics,49(3), 255–263.

    Google Scholar 

  • Peng, K., Wen, L., Li, R., Gao, L., & Li, X. (2018). An effective hybrid algorithm for permutation flow shop scheduling problem with setup time. In 51st CIRP conference on manufacturing systems, Procedia CIRP (Vol. 72, pp. 1288–1292).

  • Rabiee, M., Zandieh, M., & Jafarian, A. (2012). Scheduling of a no-wait two machine flow shop with sequence dependent setup times and probable rework using robust metaheuristics. International Journal of Production Research,50(24), 7428–7446.

    Google Scholar 

  • Rajendran, C., & Zieglar, H. (1997). An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs. European Journal of Operational Research,103(1), 29–138.

    Google Scholar 

  • Rajendran, C., & Ziegler, H. (2003). Scheduling to minimise the sum of weighted time and weighted tardiness of jobs in a flow shop with sequence dependent setup time. European Journal of Operational Research,149(3), 513–522.

    Google Scholar 

  • Rios-Mercado, R. Z., & Bard, J. F. (1998). Computational experience with a branch-and-cut algorithm for flow shop scheduling with setups. Computers & Operations Research,25(5), 351–366.

    Google Scholar 

  • Rios-Mercado, R. Z., & Bard, J. F. (1999). A branch-and-bound algorithm for permutation flow shops with sequence dependent setup times. IIE Transactions,31, 721–731.

    Google Scholar 

  • Rios-Mercado, R. Z., & Bard, J. F. (2003). The flow shop scheduling polyhedron with setup times. Journal of Combinatorial Optimization,7(3), 291–318.

    Google Scholar 

  • Roger, Z., Mercado, R., & Bard, J. (1998). Computational experience with a branch and cut algorithm for flow shop scheduling with setups. Computers & Operations Research,25(5), 351–366.

    Google Scholar 

  • Ruiz, R., & Marato, C. (2006). A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility. European Journal of Operational Research,169(3), 781–800.

    Google Scholar 

  • Ruiz, R., Maroto, C., & Alcaraz, J. (2005). Solving the flow shop scheduling problem with sequence dependent setup times using advanced metaheuristic. European Journal of Operational Research,165(1), 34–54.

    Google Scholar 

  • Ruiz, R., & Stutzle, T. (2008). An iterated greedy heuristics for the SDST flow shop problem with makespan and weighted tardiness objectives. European Journal of Operational Research,187(3), 1143–1159.

    Google Scholar 

  • Shao, Z., Pi, D., & Shao, W. (2018). A novel discrete water wave optimisation algorithm for blocking flow shop scheduling problem with sequence dependent setup times. Swarm and Evolutionary Computation,40, 53–75.

    Google Scholar 

  • Sheikh, S., Komaki, M., Teymourian, E., & Malakooti, B. (2015). Multi-objective non-permutation flow shop with dependent setup times and missing operations. In Proceedings of the 2015 international conference on operations excellence and service engineering, Orlando, Florida, USA, September, 10–11.

  • Shen, L., Gupta, J. N., & Buscher, U. (2014). Flow shop batching and scheduling with sequence dependent setup time. Journal of Scheduling,17(4), 353–370.

    Google Scholar 

  • Sioud, A., & Gagne, C. (2018). Enhanced migrating birds optimisation algorithm for the permutation flow shop scheduling problem with sequence dependent setup times. European Journal of Operational Research,264(1), 66–73.

    Google Scholar 

  • Sonmez, A. I., & Baykasoglu, A. (1998). New dynamic programming formulation of n × m flow shop sequencing problems with due dates. International Journal of Production Research,36(8), 2269–2283.

    Google Scholar 

  • Srikar, B. N., & Ghosh, S. (1986). A MILP model for the n-job, m-stage flow shop with sequence dependent setup times. International Journal of Production Research,24(6), 1459–1474.

    Google Scholar 

  • Stafford, E. F., & Tseng, F. T. (1990). On the Srikar-Ghosh MILP model for the n × m SDST flow shop problem. International Journal of Production Research,28(10), 1817–1830.

    Google Scholar 

  • Sule, D. R., & Huang, K. Y. (1983). Sequency on two and three machines with setup, processing and removal times separated. International Journal of Production Research,21(5), 723–732.

    Google Scholar 

  • T’kindt, V., & Billaut, J. C. (2006). Multi-criteria scheduling: Theory, models and algorithms (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research,64(2), 278–285.

    Google Scholar 

  • Tseng, F. T., & Stafford, E. F. (2001). Two MILP models for the N × M SDST flow shop sequencing problem. International Journal of Production Research,39(8), 1777–1809.

    Google Scholar 

  • Vanchipura, R., & Sridharan, R. (2013). Development and analysis of constructive heuristic algorithms for flow shop scheduling problems with sequence dependent setup times. International Journal of Advanced Manufacturing Technology,67(5), 1337–1353.

    Google Scholar 

  • Vanchipura, R., Sridharan, R., & Babu, A. S. (2014). Improvement of constructive heuristics using variable neighbourhood descent for scheduling a flow shop with sequence dependent setup time. Journal of Manufacturing Systems,33(1), 65–75.

    Google Scholar 

  • Varmazyar, M., & Salmasi, N. (2012). Sequence dependent flow shop scheduling problem minimising the number of tardy jobs. International Journal of Production Research,50(20), 5843–5858.

    Google Scholar 

  • Zandieh, M., Ghomi, S. M. T. F., & Husseini, S. M. M. (2006). An immune algorithm approach to hybrid flow shops scheduling with sequence-dependent setup times. Applied Mathematics and Computation,180, 111–127.

    Google Scholar 

  • Ziaee, M. (2013). General flow shop scheduling problem with the sequence dependent setup times: A heuristic approach. Information Sciences,251, 126–135.

    Google Scholar 

Download references

Acknowledgements

The authors are most grateful to the reviewers, the associated editor and the editor-in-chief for their supportive and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sridharan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: Illustration of the Algorithms

A numerical illustration of the algorithms proposed in the present work is described in this section. For the purpose of illustration, a flow shop with seven jobs and three machines is considered, with the objective of minimising makespan and minimising mean tardiness. The processing time and due date of the jobs are presented in Table 13.

Table 13 Processing time and due date of the jobs

The setup times of the three machines are given in Tables 14, 15 and 16, respectively.

Table 14 Setup time for machine 1
Table 15 Setup time for machine 2
Table 16 Setup time for machine 3

The algorithms are illustrated in the following sections.

Appendix 1: Illustration of NSGA II

The initial population N for the algorithm is assumed as 10 (for illustration). The initial population along with their objective function values are presented in Table 17.

Table 17 Objective function values of initial population

Non-dominated sorting is performed on the initial population, and the different non-dominated fronts obtained are presented in Table 18.

Table 18 Non-dominated sorting

The parents for crossover are selected using the binary tournament selection operator based on the ranks obtained from the non-dominated sorting. The mating pool for crossover is presented in Table 19.

Table 19 Mating pool of parents for crossover

Single-point crossover with a crossover probability of 0.9 is applied on the strings in the mating pool. The offsprings obtained from the crossover operation are presented in Table 20.

Table 20 Offsprings after crossover operation

The offsprings from the crossover operation are subjected to mutation with a specific mutation probability. The method of swap mutation is adopted in the present work, and the offsprings from mutation are presented in Table 21.

Table 21 Offsprings after mutation operation

The offsprings from the mutation operation are combined with the initial population to form the new population of size 2N. The new population is sorted into different non-dominant fronts using the non-dominated sorting procedure. The new initial population of size N is to be formed from a population of size 2N. Since all the solutions in the 2N population cannot be accommodated in the new initial population, the crowding distance operator (Sect. 4.1.2) is used to select the required solutions for the new initial population. Once the new population is formed, the non-dominant solution set is updated. Table 22 presented the new population for the second generation.

Table 22 Population for the second generation

The procedure is repeated for a pre-specified number of generations. The solutions belonging to the first front become the Pareto-optimal solutions, i.e. the sequences 1–3–2–4–5–7–6 and 5–2–7–6–4–3–1.

Appendix 2: Illustration of Variable Neighbourhood Search

Consider a sequence 3–5–7–1–2–6–4–7 with seven jobs. The makespan value and the mean tardiness value of the sequence are 74 and 7.14, respectively. VNS is applied on the sequence. The various neighbourhood structures involved are swap, reversion and insertion. The sequence is first subjected to swap operation. The objective function values obtained after the first swap operation are 73 and 10.29. Since the makespan value is minimum compared with the initial solution, the solution is accepted and VNS is continued with swap operation. The swap operation is continued until there is no improvement in both the objective function values. Then, the swap operation is followed by reversion operation. Reversion is applied on the solution, and since the objective function values have no improvement with reversion, the next neighbourhood structure of insertion is applied. The objective function values have no improvement with insertion neighbourhood also. The final sequence after the VNS operation is 7–5–6–1–3–4–2, with makespan and mean tardiness values of 67 and 4.57, respectively. Table 23 presented the various neighbourhood structures applied to the solution and the improvement in the objective function values.

Table 23 Variable neighbourhood search

Appendix 3: Illustration of DPSO algorithm

The swarm size is assumed as 10 (for illustration). The sequences which form the initial population along with their objective function values are presented in Table 24.

Table 24 Objective function values of initial population

The non-dominated sorting procedure is performed on the population, and the solutions belonging to the first non-dominated front form the initial Pareto-optimal set. These solutions are considered as the global best solutions. Table 25 provides the global best solutions obtained.

Table 25 Global best solutions

The velocity components of each particle in the swarm are determined from mutation, cognition crossover and social crossover. The procedure for determining the velocity components of the first particle in the swarm is illustrated below. Consider the first particle in the swarm, i.e. 1–3–5–7–4–6–2 (Table 26).

Table 26 Global best solutions

The position of the particle is updated by selecting the best velocity component among the three components. Similarly, the velocity components of the other particles are determined, and their positions are updated. The updated position of particles in the swarm is presented in Table 27.

Table 27 Particles with their updated position

The updated solutions are added to the Pareto-optimal set, and the Pareto-optimal set is then sorted using the non-dominated sorting procedure. The Pareto-optimal solution after the first iteration is obtained as 6–5–3–2–7–4–1, with makespan value of 64 and mean tardiness 1.86. Thus, the Pareto-optimal set is updated. The solutions in the Pareto-optimal set become the global best solutions for the next generation. The solutions in the population with the updated positions become the initial population for the next generation. The algorithm terminates after a pre-specified number of generations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjana, V., Sridharan, R. & Ram Kumar, P.N. Metaheuristics for solving a multi-objective flow shop scheduling problem with sequence-dependent setup times. J Sched 23, 49–69 (2020). https://doi.org/10.1007/s10951-019-00610-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-019-00610-0

Keywords

Navigation