Multipurpose machine scheduling with rejection and identical job processing times | Journal of Scheduling Skip to main content
Log in

Multipurpose machine scheduling with rejection and identical job processing times

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

We study a set of scheduling problems on a uniform machine setting. We focus on the case of equal processing time jobs with the additional feature of job rejection. Jobs can either be processed on a predefined set of machines or rejected. Rejected jobs incur a rejection penalty and have no effect on the scheduling criterion under consideration. A solution to our problems consists of partitioning the jobs into two subsets, \(A\) and \(\overline{A}\), which are the set of accepted and the set of rejected jobs, respectively. In addition, jobs in set \(A\) have to be scheduled on the \(m\) machines. We evaluate the quality of a solution by two criteria. The first, \(F_{1}\), can be any regular scheduling criterion, while the latter, \(F_{2}\), is the total rejection cost. We consider two possible types of regular scheduling criteria; the former is a maximization criterion, while the latter is a summation criterion. For each criterion type we consider four different problem variations. We prove that all four variations are solvable in polynomial time for \(any\) maximization type of a regular scheduling criterion. When the scheduling criterion is of summation type, we show that only one of the four problem variations is solvable in polynomial time. We provide a pseudo-polynomial time algorithms to solve interesting variants of the \(\mathcal {NP}\)-hard problems, as well as a polynomial time algorithm that solves various other special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aggarwal, V. (1985). A Lagrangean-relaxation method for the constrained assignment problem. Computers and Operations Research, 12(1), 97–106.

    Article  Google Scholar 

  • Bartal, Y., Fiat, A., Karloff, H. J., & Vohra, R. (1995). New algorithms for an ancient scheduling problem. Journal of Computer and System Sciences, 51, 359–366.

    Article  Google Scholar 

  • Brucker, P. (2001). Scheduling algorithms. New York, NJ: Springer.

    Book  Google Scholar 

  • Brucker, P., Jurisch, B., & Kramer, A. (1997). Complexity of scheduling problems with multi-purpose machines. Annals of Operations Research, 70, 57–73.

    Article  Google Scholar 

  • Cao, Z., Wang, Z., Zhang, Y., & Liu, S. (2006). On several scheduling problems with rejection or discretely compressible processing times. Lecture Notes in Computer Science, 3959, 90–98.

    Article  Google Scholar 

  • Cao, Z., & Yang, X. (2009). A PTAS for parallel batch scheduling with rejection and dynamic job arrivals. Theoretical Computer Science, 410, 2732–2745.

    Article  Google Scholar 

  • Centeno, G., & Armacost, R. L. (1997). Parallel machine scheduling with release time and machine eligibility restrictions. Computers and Industrial Engineering, 33, 273–276.

    Article  Google Scholar 

  • Engels, D. W., Karger, D. R., Kolliopoulos, S. G., Segupta, S., Uma, R. N., & Wein, J. (2003). Techniques for scheduling with rejection. Journal of Algorithms, 49, 175–191.

    Article  Google Scholar 

  • Efraimidis, P. S., & Spirakis, P. G. (2006). Approximation schemes for scheduling and covering on unrelated machines. Theoretical Computer Science, 359(1–3), 400–417.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP completeness. New York, NY: W.H. Freeman & Co.

    Google Scholar 

  • Graham, R. L., Lawler, E. L., & Lenstra, J. K. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 4, 287–326.

    Article  Google Scholar 

  • Glass, A., & Kellerer, H. (2007). Parallel machine scheduling with job assignment restrictions. Naval Research Logistics, 54, 250–257.

    Article  Google Scholar 

  • Glass, C. A., & Mills, H. R. (2006). Scheduling unit length jobs with parallel nested machine processing set restriction. Computers and Operations Research, 33, 620–638.

    Article  Google Scholar 

  • Gupta, A., & Sharma, J. (1981). Tree search method for optimal core management of pressurised water reactors. Computers and Operations Research, 8, 263–266.

    Article  Google Scholar 

  • Harvey, N. J. A., Ladner, R. E., Lovasz, L., & Tamir, T. (2006). Semi-matchings for bipartite graphs and load balancing. Journal of Algorithms, 59(1), 53–78.

    Article  Google Scholar 

  • Horn, W. A. (1973). Minimizing average flow time with parallel machines. Operations Research, 21(3), 846–847.

    Article  Google Scholar 

  • Horowitz, E., & Sahni, S. (1976). Exact and approximate algorithms for scheduling nonidentical processors. Journal of the Association for Computing Machinery, 23(2), 317–327.

    Article  Google Scholar 

  • Hoogeveen, H., Skutella, M., & Woeginger, G. J. (2003). Preemptive scheduling with rejection. Mathematical Programming, 94(3), 361–374.

    Article  Google Scholar 

  • Huo, Y., & Leung, J. Y.-T. (2010). Parallel machine scheduling with nested processing set restrictions. European Journal of Operational Research, 204, 229–236.

    Article  Google Scholar 

  • Jansen, K., & Porkolab, L. (2001). Improved approximation schemes for scheduling unrelated parallel machines. Mathematics of Operations Research, 26(2), 324–338.

    Article  Google Scholar 

  • Ji, M., & Cheng, T. C. E. (2008). An FPTAS for parallel-machine scheduling under a grade of service provision to minimize Makespan. Information Processing Letters, 108(4), 171–174.

    Article  Google Scholar 

  • Kafura, D. G., & Shen, V. Y. (1977). Task scheduling on a multiprocessor system with independent memories. SIAM Journal on Computing, 6, 167–187.

    Article  Google Scholar 

  • Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Thatcher (Eds.), Complexity of computer computations (pp. 85–103). New York, NY: Plenum.

    Chapter  Google Scholar 

  • Lieshout, P. M. D., & Volgenant, A. (2007). A branch-and-bound algorithm for the singly constrained assignment problem. European Journal of Operational Research, 176(1), 151–164.

    Article  Google Scholar 

  • Lee, K., Leung, J. Y.-T., & Pinedo, M. L. (2011). Scheduling jobs with equal processing times subject to machine eligibility constraints. Journal of Scheduling, 14, 27–38.

    Article  Google Scholar 

  • Lenstra, J. K., Shmoys, D. B., & Tardos, E. (1990). Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming, 46, 259–271.

    Article  Google Scholar 

  • Leung, J. Y.-T., & Li, C. L. (2008). Scheduling with processing set restriction: A survey. International Journal of Production Economics, 116(2), 251–262.

    Article  Google Scholar 

  • Li, C.-L. (2006). Scheduling unit-length jobs with machine eligibility restrictions. European Journal of Operational Research, 174(2), 1325–1328.

    Article  Google Scholar 

  • Li, S., & Yuan, J. (2010). Parallel-machine scheduling with deteriorating jobs and rejection. Theoretical Computer Science, 411, 3642–3650.

  • Lin, Y., & Li, W. (2004). Parallel machine scheduling of machine-dependent jobs with unit-length. European Journal of Operational Research, 156, 261–266.

    Article  Google Scholar 

  • Li, C. L., & Wang, X. (2010). Scheduling parallel machines with inclusive processing set restrictions and job release times. European Journal of Operational Research, 200(3), 702–710.

    Article  Google Scholar 

  • Low, C. P. (2002). An efficient retrieval selection algorithm for video servers with random duplicated assignment storage technique. Information Processing Letters, 83(6), 315–321.

    Article  Google Scholar 

  • Mazzola, J. B., & Neebe, A. W. (1986). Resource-constrained assignment scheduling. Operations Research, 34, 560–572.

    Article  Google Scholar 

  • Ou, J., Leung, J. Y.-T., & Li, C. L. (2008). Scheduling parallel machines with inclusive processing set restrictions. Naval Research Logistics, 55(4), 328–338.

    Article  Google Scholar 

  • Pinedo, M. (2001). Scheduling: Theory, algorithms and systems (2nd ed.). Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Sengupta, S. (2003). Algorithms and approximation schemes for minimum lateness/tardiness scheduling with rejection. Lecture Notes in Computer Science, 2748, 79–90.

    Article  Google Scholar 

  • Serafini, P. (1986). Some Considerations about computational complexity for multiobjective combinatorial problems. In J. Jahn & W. Krabs (Eds.), Recent advances and historical development of vector optimization ( vol. 294). Lecture notes in Economics and mathematical systems. Berlin: Springer.

  • Shabtay, D., Gaspar, N., & Yedidsion, L. (2012). A bicriteria approach to scheduling a single machine with rejection and positional penalties. Journal of Combinatorial Optimization, 23(4), 395–424.

    Article  Google Scholar 

  • Shabtay, D., Gasper, N., & Kaspi, M. (2013). A survey on scheduling problems with rejection. Journal of Scheduling, 16(1), 3–28.

  • Shchepin, E. V., & Vakhania, N. (2005). An optimal rounding gives a better approximation for scheduling unrelated machines. Operations Research Letters, 33(2), 127–133.

    Article  Google Scholar 

  • Smith, W. E. (1956). Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3, 59–66.

    Article  Google Scholar 

  • Spyropoulos, C. D., & Evans, D. J. (1985). Analysis of the Q.A.D. algorithm for an homogeneous multiprocessor computing model with independent memories. International Journal of Computer Mathematics, 17, 237–255.

  • T’kindt, V., & Billaut, J.-C. (2006). Multicriteria scheduling: Theory, models and algorithms (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Zhang, Y., Ren, J., & Wang, C. (2009). Scheduling with rejection to minimize the Makespan. Lecture Notes in Computer Science, 5573, 411–420.

    Article  Google Scholar 

  • Zhang, S., Cao, Z., & Zhang, Y. (2009). Scheduling with rejection to minimize the total weighted completion time, ISORA’09, pp. 111–114.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dvir Shabtay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabtay, D., Karhi, S. & Oron, D. Multipurpose machine scheduling with rejection and identical job processing times. J Sched 18, 75–88 (2015). https://doi.org/10.1007/s10951-014-0386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-014-0386-9

Keywords

Navigation