Energy-Efficient Delay-Aware Task Offloading in Fog-Cloud Computing System for IoT Sensor Applications | Journal of Network and Systems Management Skip to main content
Log in

Energy-Efficient Delay-Aware Task Offloading in Fog-Cloud Computing System for IoT Sensor Applications

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Internet of Things (IoT) system comprises of many interrelated computing devices and smart sensors with limited battery, processing, and storage capabilities. Due to its nature and area of operation, IoT systems always work in a constrained environment, with battery depletion, hardware malfunction and harsh wireless channel conditions. For application processing, Cloud computing provided an absolute solution, but its viability is limited by the exorbitant costs and high transmission delays associated with it. In such a scenario, Fog computing is fast emerging as an attractive solution. It focuses on shifting the data processing activities to the edge of the network. However, fog computing has its own share of challenges that needs to be overcome for efficient and effective designs. The computational resources of fog server are so scarce that it cannot respond quickly to the high computational requirements that can cause an unacceptable queuing delay among the IoT applications. Hence, the optimal solution lies in the convergence of the two technologies. In this paper, the energy efficient and delay-aware task allocation problem in an IoT-fog-cloud system is investigated. We formulate a delay-based task allocation problem which suggests the optimal task allocation among local IoT devices, edge server and the cloud toward the minimum energy consumption and end to end delay. The problem is then solved using Energy-efficient task offloading strategy (EETOS) based on Levy-flight moth flame optimization (LMFO) algorithm. The EETOS reduces energy consumption by 22%, 25% and 29% in comparison to the Online Job Dispatching (OJD), Multi-tier Fog Computing (MFC) and Computation Offloading Game (COG) algorithms, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stankovi, J.: Research directions for the internet of things. IEEE Internet Things J. 1(1), 3–9 (2014)

    Article  Google Scholar 

  2. Zanella, A.: Internet of things for smart cities. IEEE Internet Things Journal. 1(1), 22–32 (2014)

    Article  Google Scholar 

  3. ITU Internet Reports (2005) The internet of things, international telecommunication union. Tech. Rep.

  4. Atzori, L., Lera, A., Morabito, G.: The internet of things: a survey. Computer Networks Journal 54, 2787–2805 (2010)

    Article  Google Scholar 

  5. Akyildiz, I.F., Jornet, J.M.: The internet of nano-things. IEEE Wirel. Commun. Mag. 17(6), 58–63 (2010)

    Article  Google Scholar 

  6. Chiang, M., Zhang, T.: Fog and IoT: An overview of research opportunities. IEEE Internet Things J. 3, 854–864 (2016)

    Article  Google Scholar 

  7. Botta, A., De Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing and internet of things: A survey. Future Gener. Comput. Syst. 56, 684–700 (2016)

    Article  Google Scholar 

  8. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and challenges. IEEE Internet Things J. 3, 637–646 (2016)

    Article  Google Scholar 

  9. Satyanarayanan, M.: The emergence of edge computing. Computer 50, 30–39 (2017)

    Article  Google Scholar 

  10. Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., Sabella, D.: On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 19, 1657–1681 (2017)

    Article  Google Scholar 

  11. Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J., Polakos, P.A.: A comprehensive surveyon fog computing: State-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 20, 416–464 (2017)

    Article  Google Scholar 

  12. Brogi, A., Forti, S.: QoS-aware deployment of IoT applications through the fog. IEEE Internet Things 4(5), 1113–1116 (2017)

    Article  Google Scholar 

  13. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing: The communication perspective. IEEE Commun. Surv. Tutor. 19, 2322–2358 (2017)

    Article  Google Scholar 

  14. Yu, W., Liang, F., He, X., Hatcher, W.G., Lu, C., Lin, J., Yang, X.: A survey on the edge computing for theInternet of Things. IEEE Access 6, 6900–6919 (2018)

    Article  Google Scholar 

  15. Bhattacharya, A., De, P.: A survey of adaptation techniques in computation offloading. J. Netw. Comput. Appl. 78, 97–115 (2017)

    Article  Google Scholar 

  16. L. Chen, S. Zhou, and J. Xu. (Jan. 2017). Energy efficient mobile edge computing in dense cellular networks. (Online). Available: https://arxiv.org/abs/1701.07405

  17. International Series in Operations Research & Management Science K. Miettinen, F.S. Hillier (Ed.), Nonlinear Multi-0bjective Optimization, 12 Springer, Boston, MA, 1998. International Series in Operations Research & Management Science

  18. Holland, J.H.: Genetic algorithms. Sci. Am. 267, 66–72 (1992)

    Article  Google Scholar 

  19. A. Colorni, M. Dorigo, V (1991) Maniezzo, Distributed optimization by ant colonies, in: Proceedings of the First European Conference on Artificial Life, pp. 134–142.

  20. R.C. Eberhart, J. Kennedy (1995) A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science pp. 39–43.

  21. L.J. Fogel, A.J. Owens, M.J. Walsh (1966) Artificial intelligence through simulated evolution

  22. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3, 82–102 (1999)

    Article  Google Scholar 

  23. Rechenberg, I.: Evolution strategy: optimization of technical systems by means of biological evolution, vol. 104. Fromman-Holzboog, Stuttgart (1973)

    Google Scholar 

  24. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Opt. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  25. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

  26. Liang, K., Zhao, L., Chu, X., Chen, H.-H.: An integrated architecture for software-defined and virtualized radio access networks with fog computing. IEEE Netw. 31(1), 80–87 (2017)

    Article  Google Scholar 

  27. Hasan, R., Hossain, M., Khan, R.: Aura: an incentive-driven ad-hoc IoT cloud framework for proximal mobile computation offloading. Futur. Gener. Comput. Syst. 86, 821–835 (2017)

    Article  Google Scholar 

  28. K. Habak, M. Ammar , K.A. Harras , E. Zegura (2015) Femto clouds: leveraging mobile devices to provide cloud service at the edge, in: Proceeding in IEEE 8th International Conference on Cloud Computing, CLOUD, IEEE, pp. 9–16 .

  29. Wang, Y., Sheng, M., Wang, X., Wang, L., Li, J.: Mobile-edge computing: partial computation offloading using dynamic voltage scaling. IEEE Trans. Commun. 64(10), 4268–4282 (2016)

    Google Scholar 

  30. Shah-Mansouri, H., Wong, V.W.S.: Hierarchical fog-cloud computing for IoT systems: a computation offloading game. IEEE Internet Things J. 5(4), 1–12 (2018)

    Article  Google Scholar 

  31. Mirjalili, S.: Moth-fame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  32. Zhiming Li, Yongquan Zhou, Sen Zhang, and Junmin Song (2016) Lévy-Flight Moth-Flame Algorithm for Function Optimization and Engineering Design Problems. Mathematical Problems in Engineering, vol. 2016.

  33. Hu, W., Cao, G.: Quality-aware traffic offloading in wireless networks. IEEE Trans. Mob. Comput. 16(11), 3182–3195 (2017)

    Article  Google Scholar 

  34. Xu, J., Hao, Z., Zhang, R., Sun, X.: A method based on the combination of laxity and ant colony system for cloud-fog task scheduling. IEEE Access 7, 116218–116226 (2019)

    Article  Google Scholar 

  35. Xu, X., Xue, Y., Li, X., Qi, L., Wan, S.: A computation offloading method for edge computing with vehicle-to-everything. IEEE Access 7, 131068–131077 (2019)

    Article  Google Scholar 

  36. Yang, Y., Wang, K., Zhang, G., Chen, X., Luo, X., Zhou, M.: MEETS: maximal energy efficient task scheduling in homogeneous fog networks. IEEE Internet Things J. 5(5), 4076–4087 (2018)

    Article  Google Scholar 

  37. Li, X., Liu, Y., Ji, H., Zhang, H., Leung, V.C.M.: Optimizing resources allocation for fog computing-based internet of things networks. IEEE Access 7, 64907–64922 (2019)

    Article  Google Scholar 

  38. Guo, M., Li, L., Guan, Q.: Energy-efficient and delay-guaranteed workload allocation in IoT-edge-cloud computing systems. IEEE Access 7, 78685–78697 (2019)

    Article  Google Scholar 

  39. Han, S., et al.: Energy efficient secure computation offloading in NOMA-based m-MTC networks for IoT. IEEE Internet Things J. 6(3), 5674–5690 (2019)

    Article  Google Scholar 

  40. Jia, M., Yin, Z., Li, D., Guo, Q., Gu, X.: Toward improved offloading efficiency of data transmission in the IoT-cloud by leveraging secure truncating OFDM. IEEE Internet Things J. 6(3), 4252–4261 (2019)

    Article  Google Scholar 

  41. Li, G., et al.: Energy efficient data collection in large-scale internet of things via computation offloading. IEEE Internet Things J. 6(3), 4176–4187 (2019)

    Article  Google Scholar 

  42. Nan, Y., et al.: Adaptive energy-aware computation offloading for cloud of things systems. IEEE Access 5, 23947–23957 (2017)

    Article  Google Scholar 

  43. Al-Khafajiy, M., Baker, T., Waraich, A., Al-Jumeily, D., & Hussain, A. (2018). Iot-fog optimal workload via fog offloading. In 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion) (pp. 359–364). IEEE.

  44. Ali, Z., Jiao, L., Baker, T., Abbas, G., Abbas, Z.H., Khaf, S.: A deep learning approach for energy efficient computational offloading in mobile edge computing. IEEE Access 7, 149623–149633 (2019)

    Article  Google Scholar 

  45. Al Ridhawi, I., Kotb, Y., Aloqaily, M., Jararweh, Y., Baker, T.: A profitable and energy-efficient cooperative fog solution for IoT services. IEEE Trans. Industr. Inf. 16(5), 3578–3586 (2020)

    Article  Google Scholar 

  46. Baker, T., Aldawsari, B., Asim, M., Tawfik, H., Maamar, Z., Buyya, R.: Cloud-SEnergy: A bin-packing based multi-cloud service broker for energy efficient composition and execution of data-intensive applications. Sustainable Computing: informatics and systems 19, 242–252 (2018)

    Google Scholar 

  47. He, J., Wei, J., Chen, K., Tang, Z., Zhou, Y., Zhang, Y.: Multi-tier fog computing with large-scale IoT data analytics for smart cities. IEEE Internet Things J. 5(2), 1–10 (2018)

    Article  Google Scholar 

  48. H. Tan, Z. Han, X.-Y. Li, F.C.M. Lau (2017) Online job dispatching and scheduling in edge-clouds. Proceeding in IEEE Conference on Computer Communications” INFOCOM 2017: 1–9

  49. Thakur, S., Chaurasia, A.: Towards green cloud computing: Impact of carbon footprint on environment 6th international conference—cloud system and big data engineering (Confluence). Noida 2016, 209–213 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvinder Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Singh, R. Energy-Efficient Delay-Aware Task Offloading in Fog-Cloud Computing System for IoT Sensor Applications. J Netw Syst Manage 30, 14 (2022). https://doi.org/10.1007/s10922-021-09622-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-021-09622-8

Keywords