Particulate Matter Monitoring and Assessment through Internet of Things: a Health Information System for Enhanced Living Environments | Journal of Medical Systems Skip to main content

Advertisement

Log in

Particulate Matter Monitoring and Assessment through Internet of Things: a Health Information System for Enhanced Living Environments

  • Mobile & Wireless Health
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

People spend most of their time inside buildings. Therefore, indoor air quality monitoring contributes to improve health and well-being. Several studies focus on the critical impact of particulate matter on residential air quality. In 2016, particulate matter caused 412 thousand premature deaths in 41 European countries. This paper presents the development of an affordable health information system for enhanced living environments. The authors propose a cost-effective, modular, scalable, and easy installation solution for particulate matter monitoring. The system is connected to ThingSpeak. It can be installed in any type of building. It requires only a power source and a Wi-Fi network with internet access. The main contribution of this paper is to present the detailed architecture and testing results. The particulate matter monitoring system was installed for one week in a domestic kitchen with an open fireplace. The results showed impact of the biomass burning on indoor air quality. The mean values per day ranged from: 10.53 to 50.62 μg/m3 for PM1.0, 15.35 to 69.37 μg/m3 for PM2.5, and 20.1 to 90.69 μg/m3 for PM10. The maximum values per hour were registered at 13:00: 72.14 μg/m3 for PM1.0, 99.70 μg/m3 for PM2.5, and 132.13 μg/m3 for PM10. Cost-effective sensors do not have the accuracy level of industrial equipment. Therefore, they should not be used for numerical and in-depth accurate characterization of the environment. Nevertheless, continuous particulate matter monitoring provides consistent data series for analysis of indoor air quality evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wilson, C., Hargreaves, T., Hauxwell-Baldwin, R.: Smart homes and their users: a systematic analysis and key challenges. Pers. Ubiquitous Comput. 19, 463–476 (2015).

    Article  Google Scholar 

  2. Dey, N., Ashour, A.S., Shi, F., Fong, S.J., Tavares, J.M.R.S.: Medical cyber-physical systems: A survey. J. Med. Syst. 42, 74 (2018). https://doi.org/10.1007/s10916-018-0921-x.

    Article  PubMed  Google Scholar 

  3. Mavrogiorgou, A., Kiourtis, A., Perakis, K., Pitsios, S., Kyriazis, D.: IoT in Healthcare: Achieving Interoperability of High-Quality Data Acquired by IoT Medical Devices. Sensors. 19, 1978 (2019). https://doi.org/10.3390/s19091978.

    Article  Google Scholar 

  4. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 17, 2347–2376 (2015). https://doi.org/10.1109/COMST.2015.2444095.

    Article  Google Scholar 

  5. Ullah, F., Habib, M.A., Farhan, M., Khalid, S., Durrani, M.Y., Jabbar, S.: Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare. Sustain. Cities Soc. 34, 90–96 (2017). https://doi.org/10.1016/j.scs.2017.06.010.

    Article  Google Scholar 

  6. Ben Hmida, H., Braun, A.: Enabling an Internet of Things Framework for Ambient Assisted Living. In: Wichert, R. and Mand, B. (eds.) Ambient Assisted Living. pp. 181–196. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-52322-4_13.

    Chapter  Google Scholar 

  7. Marques, G.: Ambient Assisted Living and Internet of Things. In: Cardoso, P.J.S., Monteiro, J., Semião, J., and Rodrigues, J.M.F. (eds.) Harnessing the Internet of Everything (IoE) for Accelerated Innovation Opportunities. pp. 100–115. IGI Global, Hershey (2019). https://doi.org/10.4018/978-1-5225-7332-6.ch005.

    Chapter  Google Scholar 

  8. Hamza, R., Yan, Z., Muhammad, K., Bellavista, P., Titouna, F.: A privacy-preserving cryptosystem for IoT E-healthcare. Inf. Sci. 527, 493–510 (2020).

    Article  Google Scholar 

  9. Sharma, M., Sharma, S., Singh, G.: Remote monitoring of physical and mental state of 2019-nCoV victims using social internet of things, fog and soft computing techniques. Comput. Methods Programs Biomed. 196, 105609 (2020). https://doi.org/10.1016/j.cmpb.2020.105609.

    Article  PubMed  Google Scholar 

  10. Kaur, P., Sharma, M.: A Smart and Promising Neurological Disorder Diagnostic System: An Amalgamation of Big Data, IoT, and Emerging Computing Techniques. In: Gupta, D., Bhattacharyya, S., Khanna, A., and Sagar, K. (eds.) Intelligent Data Analysis. pp. 241–264. Wiley (2020). https://doi.org/10.1002/9781119544487.ch12.

  11. Kumar, P.M., Lokesh, S., Varatharajan, R., Chandra Babu, G., Parthasarathy, P.: Cloud and IoT based disease prediction and diagnosis system for healthcare using Fuzzy neural classifier. Future Gener. Comput. Syst. 86, 527–534 (2018). https://doi.org/10.1016/j.future.2018.04.036.

    Article  Google Scholar 

  12. Kaur, P., Kumar, R., Kumar, M.: A healthcare monitoring system using random forest and internet of things (IoT). Multimed. Tools Appl. 78, 19905–19916 (2019). https://doi.org/10.1007/s11042-019-7327-8.

    Article  Google Scholar 

  13. Tang, R., Wang, Z.: Field study on indoor air quality of urban apartments in severe cold region in China. Atmospheric Pollut. Res. 9, 552–560 (2018). https://doi.org/10.1016/j.apr.2017.12.004.

    Article  CAS  Google Scholar 

  14. Seguel, J.M., Merrill, R., Seguel, D., Campagna, A.C.: Indoor Air Quality. Am. J. Lifestyle Med. 1559827616653343 (2016).

  15. Tsai, W.-T.: Overview of Green Building Material (GBM) Policies and Guidelines with Relevance to Indoor Air Quality Management in Taiwan. Environments. 5, 4 (2017). https://doi.org/10.3390/environments5010004.

    Article  Google Scholar 

  16. Singleton, R., Salkoski, A.J., Bulkow, L., Fish, C., Dobson, J., Albertson, L., Skarada, J., Ritter, T., Kovesi, T., Hennessy, T.W.: Impact of home remediation and household education on indoor air quality, respiratory visits and symptoms in Alaska Native children. Int. J. Circumpolar Health. 77, 1422669 (2018). https://doi.org/10.1080/22423982.2017.1422669.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bruce, N., Pope, D., Rehfuess, E., Balakrishnan, K., Adair-Rohani, H., Dora, C.: WHO indoor air quality guidelines on household fuel combustion: Strategy implications of new evidence on interventions and exposure–risk functions. Atmos. Environ. 106, 451–457 (2015). https://doi.org/10.1016/j.atmosenv.2014.08.064.

    Article  CAS  Google Scholar 

  18. Stewart, D.R., Saunders, E., Perea, R.A., Fitzgerald, R., Campbell, D.E., Stockwell, W.R.: Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin. Environ. Health Insights. 11, 117863021773755 (2017). https://doi.org/10.1177/1178630217737551.

    Article  Google Scholar 

  19. Walsh, P.J., Dudney, C.S., Copenhaver, E.D.: Indoor air quality. CRC Press (1983).

  20. National Weather Service: Why Air Quality Is Important, https://www.weather.gov/safety/airquality, last accessed 2019/07/21.

  21. European Environment Agency: Air quality in Europe: 2019 report. (2019).

  22. Khajehzadeh, I., Vale, B.: How New Zealanders distribute their daily time between home indoors, home outdoors and out of home. Kōtuitui N. Z. J. Soc. Sci. Online. 12, 17–31 (2017). https://doi.org/10.1080/1177083X.2016.1187636.

    Article  Google Scholar 

  23. Schweizer, C., Edwards, R.D., Bayer-Oglesby, L., Gauderman, W.J., Ilacqua, V., Juhani Jantunen, M., Lai, H.K., Nieuwenhuijsen, M., Künzli, N.: Indoor time–microenvironment–activity patterns in seven regions of Europe. J. Expo. Sci. Environ. Epidemiol. 17, 170–181 (2007). https://doi.org/10.1038/sj.jes.7500490.

    Article  CAS  PubMed  Google Scholar 

  24. Varshney, P., Saini, R., Taneja, A.: Trace element concentration in fine particulate matter (PM2.5) and their bioavailability in different microenvironments in Agra, India: a case study. Environ. Geochem. Health. 38, 593–605 (2016). https://doi.org/10.1007/s10653-015-9745-5.

    Article  CAS  PubMed  Google Scholar 

  25. Slezakova, K., Castro, D., Delerue-Matos, C., Morais, S., do Pereira, MC: Levels and risks of particulate-bound PAHs in indoor air influenced by tobacco smoke: a field measurement. Environ. Sci. Pollut. Res. 21, 4492–4501 (2014). https://doi.org/10.1007/s11356-013-2391-5.

    Article  CAS  Google Scholar 

  26. Morawska, L., Afshari, A., Bae, G.N., Buonanno, G., Chao, C.Y.H., Hänninen, O., Hofmann, W., Isaxon, C., Jayaratne, E.R., Pasanen, P., Salthammer, T., Waring, M., Wierzbicka, A.: Indoor aerosols: from personal exposure to risk assessment. Indoor Air. 23, 462–487 (2013). https://doi.org/10.1111/ina.12044.

    Article  CAS  PubMed  Google Scholar 

  27. Morawska, L., Ayoko, G.A., Bae, G.N., Buonanno, G., Chao, C.Y.H., Clifford, S., Fu, S.C., Hänninen, O., He, C., Isaxon, C., Mazaheri, M., Salthammer, T., Waring, M.S., Wierzbicka, A.: Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environ. Int. 108, 75–83 (2017). https://doi.org/10.1016/j.envint.2017.07.025.

    Article  CAS  PubMed  Google Scholar 

  28. Asthma exacerbation is associated with particulate matter source factors in children in New York City | SpringerLink, 10.1007%2Fs11869-013-0230-y, last accessed 2020/09/11.

  29. Vicente, E.D., Vicente, A.M., Evtyugina, M., Oduber, F.I., Amato, F., Querol, X., Alves, C.: Impact of wood combustion on indoor air quality. Sci. Total Environ. 705, 135769 (2020). https://doi.org/10.1016/j.scitotenv.2019.135769.

    Article  CAS  PubMed  Google Scholar 

  30. Bartington, S.E., Bakolis, I., Devakumar, D., Kurmi, O.P., Gulliver, J., Chaube, G., Manandhar, D.S., Saville, N.M., Costello, A., Osrin, D., Hansell, A.L., Ayres, J.G.: Patterns of domestic exposure to carbon monoxide and particulate matter in households using biomass fuel in Janakpur, Nepal. Environ. Pollut. 220, 38–45 (2017). https://doi.org/10.1016/j.envpol.2016.08.074.

    Article  CAS  PubMed  Google Scholar 

  31. Amato, F., Alastuey, A., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Severi, M., Becagli, S., Gianelle, V.L., Colombi, C., Alves, C., Custódio, D., Nunes, T., Cerqueira, M., Pio, C., Eleftheriadis, K., Diapouli, E., Reche, C., Minguillón, M.C., Manousakas, M.-I., Maggos, T., Vratolis, S., Harrison, R.M., Querol, X.: AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities. Atmospheric Chem. Phys. 16, 3289–3309 (2016). https://doi.org/10.5194/acp-16-3289-2016.

    Article  CAS  Google Scholar 

  32. Vicente, E.D., Alves, C.A.: An overview of particulate emissions from residential biomass combustion. Atmospheric Res. 199, 159–185 (2018). https://doi.org/10.1016/j.atmosres.2017.08.027.

    Article  CAS  Google Scholar 

  33. Afshar-Mohajer, N., Godfrey, W.H., Rule, A.M., Matsui, E.C., Gordon, J., Koehler, K.: A Low-Cost Device for Bulk Sampling of Airborne Particulate Matter: Evaluation of an Ionic Charging Device. Aerosol Air Qual. Res. 17, 1452–1462 (2017). https://doi.org/10.4209/aaqr.2016.09.0423.

    Article  CAS  Google Scholar 

  34. Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., Redon, N., Crunaire, S., Borowiak, A.: Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere. 10, 506 (2019). https://doi.org/10.3390/atmos10090506.

    Article  CAS  Google Scholar 

  35. Ritchie, H., Roser, M.: Indoor Air Pollution, https://ourworldindata.org/indoor-air-pollution, last accessed 2019/11/27.

  36. Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M.S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y.F., Pereira, G., Ding, A., Huang, X., Dumka, U.C.: A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 579, 1000–1034 (2017). https://doi.org/10.1016/j.scitotenv.2016.11.025.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma, D., Jain, S.: Impact of intervention of biomass cookstove technologies and kitchen characteristics on indoor air quality and human exposure in rural settings of India. Environ. Int. 123, 240–255 (2019). https://doi.org/10.1016/j.envint.2018.11.059.

    Article  CAS  PubMed  Google Scholar 

  38. Shen, G., Du, W., Luo, Z., Li, Y., Cai, G., Lu, C., Qiu, Y., Chen, Y., Cheng, H., Tao, S.: Fugitive Emissions of CO and PM2.5 from Indoor Biomass Burning in Chimney Stoves Based on a Newly Developed Carbon Balance Approach. Environ. Sci. Technol. Lett. 7, 128–134 (2020). https://doi.org/10.1021/acs.estlett.0c00095.

    Article  CAS  Google Scholar 

  39. Sigsgaard, T., Forsberg, B., Annesi-Maesano, I., Blomberg, A., Bølling, A., Boman, C., Bønløkke, J., Brauer, M., Bruce, N., Héroux, M.-E., Hirvonen, M.-R., Kelly, F., Künzli, N., Lundbäck, B., Moshammer, H., Noonan, C., Pagels, J., Sallsten, G., Sculier, J.-P., Brunekreef, B.: Health impacts of anthropogenic biomass burning in the developed world. Eur. Respir. J. 46, 1577–1588 (2015). https://doi.org/10.1183/13993003.01865-2014.

    Article  CAS  PubMed  Google Scholar 

  40. Petracchini, F., Romagnoli, P., Paciucci, L., Vichi, F., Imperiali, A., Paolini, V., Liotta, F., Cecinato, A.: Influence of transport from urban sources and domestic biomass combustion on the air quality of a mountain area. Environ. Sci. Pollut. Res. 24, 4741–4754 (2017). https://doi.org/10.1007/s11356-016-8111-1.

    Article  CAS  Google Scholar 

  41. Yin, H., Liu, C., Zhang, L., Li, A., Ma, Z.: Measurement and evaluation of indoor air quality in naturally ventilated residential buildings. Indoor Built Environ. 28, 1307–1323 (2019). https://doi.org/10.1177/1420326X19833118.

    Article  CAS  Google Scholar 

  42. Lawrence, A.J., Khan, T.: Indoor Air Quality Assessment as Related to Household Conditions in Rural Houses During Winter Season. In: Gupta, T., Agarwal, A.K., Agarwal, R.A., and Labhsetwar, N.K. (eds.) Environmental Contaminants: Measurement, Modelling and Control. pp. 221–244. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7332-8_11.

    Chapter  Google Scholar 

  43. Saraga, D.E., Makrogkika, A., Karavoltsos, S., Sakellari, A., Diapouli, E., Eleftheriadis, K., Vasilakos, C., Helmis, C., Maggos, T.: A Pilot Investigation of PM Indoor/Outdoor Mass Concentration and Chemical Analysis during a Period of Extensive Fireplace Use in Athens. Aerosol Air Qual. Res. 15, 2485–2495 (2015). https://doi.org/10.4209/aaqr.2015.02.0100.

    Article  CAS  Google Scholar 

  44. Castro, A., Calvo, A.I., Blanco-Alegre, C., Oduber, F., Alves, C., Coz, E., Amato, F., Querol, X., Fraile, R.: Impact of the wood combustion in an open fireplace on the air quality of a living room: Estimation of the respirable fraction. Sci. Total Environ. 628–629, 169–176 (2018). https://doi.org/10.1016/j.scitotenv.2018.02.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo Marques.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mobile & Wireless Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, G., Pitarma, R. Particulate Matter Monitoring and Assessment through Internet of Things: a Health Information System for Enhanced Living Environments. J Med Syst 44, 207 (2020). https://doi.org/10.1007/s10916-020-01674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-020-01674-8

Keywords

Navigation