Abstract
People spend most of their time inside buildings. Therefore, indoor air quality monitoring contributes to improve health and well-being. Several studies focus on the critical impact of particulate matter on residential air quality. In 2016, particulate matter caused 412 thousand premature deaths in 41 European countries. This paper presents the development of an affordable health information system for enhanced living environments. The authors propose a cost-effective, modular, scalable, and easy installation solution for particulate matter monitoring. The system is connected to ThingSpeak. It can be installed in any type of building. It requires only a power source and a Wi-Fi network with internet access. The main contribution of this paper is to present the detailed architecture and testing results. The particulate matter monitoring system was installed for one week in a domestic kitchen with an open fireplace. The results showed impact of the biomass burning on indoor air quality. The mean values per day ranged from: 10.53 to 50.62 μg/m3 for PM1.0, 15.35 to 69.37 μg/m3 for PM2.5, and 20.1 to 90.69 μg/m3 for PM10. The maximum values per hour were registered at 13:00: 72.14 μg/m3 for PM1.0, 99.70 μg/m3 for PM2.5, and 132.13 μg/m3 for PM10. Cost-effective sensors do not have the accuracy level of industrial equipment. Therefore, they should not be used for numerical and in-depth accurate characterization of the environment. Nevertheless, continuous particulate matter monitoring provides consistent data series for analysis of indoor air quality evolution.
Similar content being viewed by others
References
Wilson, C., Hargreaves, T., Hauxwell-Baldwin, R.: Smart homes and their users: a systematic analysis and key challenges. Pers. Ubiquitous Comput. 19, 463–476 (2015).
Dey, N., Ashour, A.S., Shi, F., Fong, S.J., Tavares, J.M.R.S.: Medical cyber-physical systems: A survey. J. Med. Syst. 42, 74 (2018). https://doi.org/10.1007/s10916-018-0921-x.
Mavrogiorgou, A., Kiourtis, A., Perakis, K., Pitsios, S., Kyriazis, D.: IoT in Healthcare: Achieving Interoperability of High-Quality Data Acquired by IoT Medical Devices. Sensors. 19, 1978 (2019). https://doi.org/10.3390/s19091978.
Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 17, 2347–2376 (2015). https://doi.org/10.1109/COMST.2015.2444095.
Ullah, F., Habib, M.A., Farhan, M., Khalid, S., Durrani, M.Y., Jabbar, S.: Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare. Sustain. Cities Soc. 34, 90–96 (2017). https://doi.org/10.1016/j.scs.2017.06.010.
Ben Hmida, H., Braun, A.: Enabling an Internet of Things Framework for Ambient Assisted Living. In: Wichert, R. and Mand, B. (eds.) Ambient Assisted Living. pp. 181–196. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-52322-4_13.
Marques, G.: Ambient Assisted Living and Internet of Things. In: Cardoso, P.J.S., Monteiro, J., Semião, J., and Rodrigues, J.M.F. (eds.) Harnessing the Internet of Everything (IoE) for Accelerated Innovation Opportunities. pp. 100–115. IGI Global, Hershey (2019). https://doi.org/10.4018/978-1-5225-7332-6.ch005.
Hamza, R., Yan, Z., Muhammad, K., Bellavista, P., Titouna, F.: A privacy-preserving cryptosystem for IoT E-healthcare. Inf. Sci. 527, 493–510 (2020).
Sharma, M., Sharma, S., Singh, G.: Remote monitoring of physical and mental state of 2019-nCoV victims using social internet of things, fog and soft computing techniques. Comput. Methods Programs Biomed. 196, 105609 (2020). https://doi.org/10.1016/j.cmpb.2020.105609.
Kaur, P., Sharma, M.: A Smart and Promising Neurological Disorder Diagnostic System: An Amalgamation of Big Data, IoT, and Emerging Computing Techniques. In: Gupta, D., Bhattacharyya, S., Khanna, A., and Sagar, K. (eds.) Intelligent Data Analysis. pp. 241–264. Wiley (2020). https://doi.org/10.1002/9781119544487.ch12.
Kumar, P.M., Lokesh, S., Varatharajan, R., Chandra Babu, G., Parthasarathy, P.: Cloud and IoT based disease prediction and diagnosis system for healthcare using Fuzzy neural classifier. Future Gener. Comput. Syst. 86, 527–534 (2018). https://doi.org/10.1016/j.future.2018.04.036.
Kaur, P., Kumar, R., Kumar, M.: A healthcare monitoring system using random forest and internet of things (IoT). Multimed. Tools Appl. 78, 19905–19916 (2019). https://doi.org/10.1007/s11042-019-7327-8.
Tang, R., Wang, Z.: Field study on indoor air quality of urban apartments in severe cold region in China. Atmospheric Pollut. Res. 9, 552–560 (2018). https://doi.org/10.1016/j.apr.2017.12.004.
Seguel, J.M., Merrill, R., Seguel, D., Campagna, A.C.: Indoor Air Quality. Am. J. Lifestyle Med. 1559827616653343 (2016).
Tsai, W.-T.: Overview of Green Building Material (GBM) Policies and Guidelines with Relevance to Indoor Air Quality Management in Taiwan. Environments. 5, 4 (2017). https://doi.org/10.3390/environments5010004.
Singleton, R., Salkoski, A.J., Bulkow, L., Fish, C., Dobson, J., Albertson, L., Skarada, J., Ritter, T., Kovesi, T., Hennessy, T.W.: Impact of home remediation and household education on indoor air quality, respiratory visits and symptoms in Alaska Native children. Int. J. Circumpolar Health. 77, 1422669 (2018). https://doi.org/10.1080/22423982.2017.1422669.
Bruce, N., Pope, D., Rehfuess, E., Balakrishnan, K., Adair-Rohani, H., Dora, C.: WHO indoor air quality guidelines on household fuel combustion: Strategy implications of new evidence on interventions and exposure–risk functions. Atmos. Environ. 106, 451–457 (2015). https://doi.org/10.1016/j.atmosenv.2014.08.064.
Stewart, D.R., Saunders, E., Perea, R.A., Fitzgerald, R., Campbell, D.E., Stockwell, W.R.: Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin. Environ. Health Insights. 11, 117863021773755 (2017). https://doi.org/10.1177/1178630217737551.
Walsh, P.J., Dudney, C.S., Copenhaver, E.D.: Indoor air quality. CRC Press (1983).
National Weather Service: Why Air Quality Is Important, https://www.weather.gov/safety/airquality, last accessed 2019/07/21.
European Environment Agency: Air quality in Europe: 2019 report. (2019).
Khajehzadeh, I., Vale, B.: How New Zealanders distribute their daily time between home indoors, home outdoors and out of home. Kōtuitui N. Z. J. Soc. Sci. Online. 12, 17–31 (2017). https://doi.org/10.1080/1177083X.2016.1187636.
Schweizer, C., Edwards, R.D., Bayer-Oglesby, L., Gauderman, W.J., Ilacqua, V., Juhani Jantunen, M., Lai, H.K., Nieuwenhuijsen, M., Künzli, N.: Indoor time–microenvironment–activity patterns in seven regions of Europe. J. Expo. Sci. Environ. Epidemiol. 17, 170–181 (2007). https://doi.org/10.1038/sj.jes.7500490.
Varshney, P., Saini, R., Taneja, A.: Trace element concentration in fine particulate matter (PM2.5) and their bioavailability in different microenvironments in Agra, India: a case study. Environ. Geochem. Health. 38, 593–605 (2016). https://doi.org/10.1007/s10653-015-9745-5.
Slezakova, K., Castro, D., Delerue-Matos, C., Morais, S., do Pereira, MC: Levels and risks of particulate-bound PAHs in indoor air influenced by tobacco smoke: a field measurement. Environ. Sci. Pollut. Res. 21, 4492–4501 (2014). https://doi.org/10.1007/s11356-013-2391-5.
Morawska, L., Afshari, A., Bae, G.N., Buonanno, G., Chao, C.Y.H., Hänninen, O., Hofmann, W., Isaxon, C., Jayaratne, E.R., Pasanen, P., Salthammer, T., Waring, M., Wierzbicka, A.: Indoor aerosols: from personal exposure to risk assessment. Indoor Air. 23, 462–487 (2013). https://doi.org/10.1111/ina.12044.
Morawska, L., Ayoko, G.A., Bae, G.N., Buonanno, G., Chao, C.Y.H., Clifford, S., Fu, S.C., Hänninen, O., He, C., Isaxon, C., Mazaheri, M., Salthammer, T., Waring, M.S., Wierzbicka, A.: Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environ. Int. 108, 75–83 (2017). https://doi.org/10.1016/j.envint.2017.07.025.
Asthma exacerbation is associated with particulate matter source factors in children in New York City | SpringerLink, 10.1007%2Fs11869-013-0230-y, last accessed 2020/09/11.
Vicente, E.D., Vicente, A.M., Evtyugina, M., Oduber, F.I., Amato, F., Querol, X., Alves, C.: Impact of wood combustion on indoor air quality. Sci. Total Environ. 705, 135769 (2020). https://doi.org/10.1016/j.scitotenv.2019.135769.
Bartington, S.E., Bakolis, I., Devakumar, D., Kurmi, O.P., Gulliver, J., Chaube, G., Manandhar, D.S., Saville, N.M., Costello, A., Osrin, D., Hansell, A.L., Ayres, J.G.: Patterns of domestic exposure to carbon monoxide and particulate matter in households using biomass fuel in Janakpur, Nepal. Environ. Pollut. 220, 38–45 (2017). https://doi.org/10.1016/j.envpol.2016.08.074.
Amato, F., Alastuey, A., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Severi, M., Becagli, S., Gianelle, V.L., Colombi, C., Alves, C., Custódio, D., Nunes, T., Cerqueira, M., Pio, C., Eleftheriadis, K., Diapouli, E., Reche, C., Minguillón, M.C., Manousakas, M.-I., Maggos, T., Vratolis, S., Harrison, R.M., Querol, X.: AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities. Atmospheric Chem. Phys. 16, 3289–3309 (2016). https://doi.org/10.5194/acp-16-3289-2016.
Vicente, E.D., Alves, C.A.: An overview of particulate emissions from residential biomass combustion. Atmospheric Res. 199, 159–185 (2018). https://doi.org/10.1016/j.atmosres.2017.08.027.
Afshar-Mohajer, N., Godfrey, W.H., Rule, A.M., Matsui, E.C., Gordon, J., Koehler, K.: A Low-Cost Device for Bulk Sampling of Airborne Particulate Matter: Evaluation of an Ionic Charging Device. Aerosol Air Qual. Res. 17, 1452–1462 (2017). https://doi.org/10.4209/aaqr.2016.09.0423.
Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., Redon, N., Crunaire, S., Borowiak, A.: Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere. 10, 506 (2019). https://doi.org/10.3390/atmos10090506.
Ritchie, H., Roser, M.: Indoor Air Pollution, https://ourworldindata.org/indoor-air-pollution, last accessed 2019/11/27.
Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M.S., Wang, S., Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L., Thai, P., Lam, Y.F., Pereira, G., Ding, A., Huang, X., Dumka, U.C.: A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 579, 1000–1034 (2017). https://doi.org/10.1016/j.scitotenv.2016.11.025.
Sharma, D., Jain, S.: Impact of intervention of biomass cookstove technologies and kitchen characteristics on indoor air quality and human exposure in rural settings of India. Environ. Int. 123, 240–255 (2019). https://doi.org/10.1016/j.envint.2018.11.059.
Shen, G., Du, W., Luo, Z., Li, Y., Cai, G., Lu, C., Qiu, Y., Chen, Y., Cheng, H., Tao, S.: Fugitive Emissions of CO and PM2.5 from Indoor Biomass Burning in Chimney Stoves Based on a Newly Developed Carbon Balance Approach. Environ. Sci. Technol. Lett. 7, 128–134 (2020). https://doi.org/10.1021/acs.estlett.0c00095.
Sigsgaard, T., Forsberg, B., Annesi-Maesano, I., Blomberg, A., Bølling, A., Boman, C., Bønløkke, J., Brauer, M., Bruce, N., Héroux, M.-E., Hirvonen, M.-R., Kelly, F., Künzli, N., Lundbäck, B., Moshammer, H., Noonan, C., Pagels, J., Sallsten, G., Sculier, J.-P., Brunekreef, B.: Health impacts of anthropogenic biomass burning in the developed world. Eur. Respir. J. 46, 1577–1588 (2015). https://doi.org/10.1183/13993003.01865-2014.
Petracchini, F., Romagnoli, P., Paciucci, L., Vichi, F., Imperiali, A., Paolini, V., Liotta, F., Cecinato, A.: Influence of transport from urban sources and domestic biomass combustion on the air quality of a mountain area. Environ. Sci. Pollut. Res. 24, 4741–4754 (2017). https://doi.org/10.1007/s11356-016-8111-1.
Yin, H., Liu, C., Zhang, L., Li, A., Ma, Z.: Measurement and evaluation of indoor air quality in naturally ventilated residential buildings. Indoor Built Environ. 28, 1307–1323 (2019). https://doi.org/10.1177/1420326X19833118.
Lawrence, A.J., Khan, T.: Indoor Air Quality Assessment as Related to Household Conditions in Rural Houses During Winter Season. In: Gupta, T., Agarwal, A.K., Agarwal, R.A., and Labhsetwar, N.K. (eds.) Environmental Contaminants: Measurement, Modelling and Control. pp. 221–244. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7332-8_11.
Saraga, D.E., Makrogkika, A., Karavoltsos, S., Sakellari, A., Diapouli, E., Eleftheriadis, K., Vasilakos, C., Helmis, C., Maggos, T.: A Pilot Investigation of PM Indoor/Outdoor Mass Concentration and Chemical Analysis during a Period of Extensive Fireplace Use in Athens. Aerosol Air Qual. Res. 15, 2485–2495 (2015). https://doi.org/10.4209/aaqr.2015.02.0100.
Castro, A., Calvo, A.I., Blanco-Alegre, C., Oduber, F., Alves, C., Coz, E., Amato, F., Querol, X., Fraile, R.: Impact of the wood combustion in an open fireplace on the air quality of a living room: Estimation of the respirable fraction. Sci. Total Environ. 628–629, 169–176 (2018). https://doi.org/10.1016/j.scitotenv.2018.02.001.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Mobile & Wireless Health
Rights and permissions
About this article
Cite this article
Marques, G., Pitarma, R. Particulate Matter Monitoring and Assessment through Internet of Things: a Health Information System for Enhanced Living Environments. J Med Syst 44, 207 (2020). https://doi.org/10.1007/s10916-020-01674-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10916-020-01674-8