De-Identification of Radiomics Data Retaining Longitudinal Temporal Information | Journal of Medical Systems
Skip to main content

Advertisement

De-Identification of Radiomics Data Retaining Longitudinal Temporal Information

  • Transactional Processing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

We propose a de-identification system which runs in a standalone mode. The system takes care of the de-identification of radiation oncology patient’s clinical and annotated imaging data including RTSTRUCT, RTPLAN, and RTDOSE. The clinical data consists of diagnosis, stages, outcome, and treatment information of the patient. The imaging data could be the diagnostic, therapy planning, and verification images. Archival of the longitudinal radiation oncology verification images like cone beam CT scans along with the initial imaging and clinical data are preserved in the process. During the de-identification, the system keeps the reference of original data identity in encrypted form. These could be useful for the re-identification if necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gillies R.J., Kinahan P.E., Hricak H.: Radiomics: images are more than pictures, they are data. Radiology 278 (2): 563–577, 2016

    Article  PubMed  Google Scholar 

  2. Prior F., Smith K., Sharma A., Kirby J., Tarbox L., Clark K., Bennett W., Nolan T., Freymann J.: The public cancer radiology imaging collections of The Cancer Imaging Archive. Scient Data 4: 170124, 2017

    Article  Google Scholar 

  3. Robinson J.D.: Beyond the DICOM header: additional issues in deidentification. Am. J. Roentgenol. 203 (6): W658–W664, 2014

    Article  Google Scholar 

  4. Kohli M.D., Summers R.M., Geis J.R.: Medical image data and datasets in the era of machine learning-whitepaper from the 2016 C-MIMI meeting dataset session. J. Digit. Imaging 30 (4): 392–399, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  5. Landau Y., Kiryati N. (2019) Dataset growth in medical image analysis research. arXiv:1908.07765

  6. Vcelak P., Kryl M., Kratochvil M., Kleckova J.: Identification and classification of DICOM files with burned-in text content. Int. J. Med. Inform. 126: 128–137, 2019

    Article  PubMed  Google Scholar 

  7. Silva J.M., Pinho E., Monteiro E., Silva J.F., Costa C.: Controlled searching in reversibly de-identified medical imaging archives. J. Biomed. Inform. 77: 81–90, 2018

    Article  PubMed  Google Scholar 

  8. Genereaux B.W., Dennison D.K., Ho K., Horn R., Silver E.L., O’Donnell K., Kahn C.E.: DICOM web: Background and application of the web standard for medical imaging. J. Digit. Imaging 31 (3): 321–326, 2018

    Article  PubMed  PubMed Central  Google Scholar 

  9. PS6.2: DICOM Standard, http://dicom.nema.org/dicom/2013/output/chtml/part05/sect_6.2.html

  10. Noumeir R.: DICOM structured report document type definition. IEEE Trans. Inform. Technol. Biomed. 7 (4): 318–328, 2003

    Article  Google Scholar 

  11. Abouakil D., Heurix J., Neubauer T.: 2011 44th Hawaii international conference on system sciences.. In: 2011 44th Hawaii International Conference on System Sciences, IEEE, pp 1–11, 2011

  12. Newhauser W., Jones T., Swerdloff S., Newhauser W., Cilia M., Carver R., Halloran A., Zhang R.: Anonymization of DICOM electronic medical records for radiation therapy. Comput. Bio. Med. 53: 134–140, 2014

    Article  Google Scholar 

  13. Gorthi S., Bach C.M., Thiran J.P.: Exporting contours to DICOM-RT structure set. Insight J. 1: 1–18, 2009

    Google Scholar 

  14. Law M.Y., Liu B.: DICOM-RT and its utilization in radiation therapy. Radiographics 29 (3): 655–667, 2009

    Article  PubMed  Google Scholar 

  15. PS3.3: DICOM Standard, http://dicom.nema.org/medical/dicom/2017d/output/chtml/part03/sect_C.8.8.html

  16. Aryanto K.Y.E., Oudkerk M., Van O.: PMA Free DICOM de-identification tools in clinical research: functioning and safety of patient privacy. Eur. Radiol. 25 (12): 3685–3695, 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Freymann J.B., Kirby J.S., Perry J.H., Clunie D.A., Jaffe C.C.: Image data sharing for biomedical research—meeting HIPAA requirements for de-identification. J. Digit.Imaging 25 (1): 14–24, 2012

    Article  PubMed  Google Scholar 

  18. Warnock M.J., Toland C., Evans D., Wallace B., Nagy P.: Benefits of using the DCM 4 CHE DICOM archive. J. Digit. Imaging 20 (1): 125–129, 2007

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kan M.W.K., Leung L.H.T., Peter K.N.: The use of biologically related model (Eclipse) for the intensity-modulated radiation therapy planning of nasopharyngeal carcinomas. PloS One 9 (11): e112229, 2014

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pieper S., Halle M., Kikinis R.: 3D Slicer.. In: 2004 2nd IEEE international symposium on biomedical imaging nano to macro (IEEE Cat No. 04 EX 821),IEEE, pp 632–635, 2004

  21. Muschelli J.: Recommendations for processing head CT data. Front. Neuroinform. 13: 61, 2019

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aryanto K.Y.E., Oudkerk M, Van O.: PMA Free DICOM de-identification tools in clinical research: functioning and safety of patient privacy. Eur. Radiol. 25 (12): 3685–3695, 2015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636522/table/Tab4/?report=objectonly

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work is carried out under National Digital Library of India (NDLI) sponsored by Ministry of Human Resource Development (MHRD), Govt. of India (approval no. IIT/SRIC/CS/NDM/2018-19/096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Kundu.

Ethics declarations

This study was funded by the Ministry of Human Resource Development IN (IIT/SRIC/CS/NDM/2018-19/096). None of the authors have potential conflicts of interest. The CHAVI protocol is approved by the institutional review board at the Tata Medical Center Kolkata. The reference no is EC/GOVT/24/IRB23 on 31st August 2018. All pattient who’s images have been biobank have given written informed consent.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: Transactional Processing Systems

Appendix

Appendix

Table 2 Selected DICOM tags for de-identification
Table 3 Patient PHI data de-identification with different tools [22]

Algorithm

Study date = s, Random date = r, Difference between original date and random date = d, Original Date = date, Treatment reference date = TRD;

$$ TotalDay = \sum\limits_{i=1}^{month-1} \frac{day*(day+1)}{2} + \sum\limits_{j=1}^{day} j $$
(1)

d = s-r or d= date-r; TRD day = TotalDay + d; TRD = ConvertToDate(TRD day);

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Chakraborty, S., Chatterjee, S. et al. De-Identification of Radiomics Data Retaining Longitudinal Temporal Information. J Med Syst 44, 99 (2020). https://doi.org/10.1007/s10916-020-01563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-020-01563-0

Keywords