Abstract
Quantitative characterization of carotid atherosclerosis and classification into symptomatic or asymptomatic type is crucial in both diagnosis and treatment planning. This paper describes a computer-aided diagnosis (CAD) system which analyzes ultrasound images and classifies them into symptomatic and asymptomatic based on the textural features. The proposed CAD system consists of three modules. The first module is preprocessing, which conditions the images for the subsequent feature extraction. The feature extraction stage uses image texture analysis to calculate Standard deviation, Entropy, Symmetry, and Run Percentage. Finally, classification is performed using AdaBoost and Support Vector Machine for automated decision making. For Adaboost, we compared the performance of five distinct configurations (Least Squares, Maximum- Likelihood, Normal Density Discriminant Function, Pocket, and Stumps) of this algorithm. For Support Vector Machine, we compared the performance using five different configurations (linear kernel, polynomial kernel configurations of different orders and radial basis function kernels). SVM with radial basis function kernel for support vector machine presented the best classification result: classification accuracy of 82.4%, sensitivity of 82.9%, and specificity of 82.1%. We feel that texture features coupled with the Support Vector Machine classifier can be used to identify the plaque tissue type. An Integrated Index, called symptomatic asymptomatic carotid index (SACI), is proposed using texture features to discriminate symptomatic and asymptomatic carotid ultrasound images using just one index or number. We hope this SACI can be used as an adjunct tool by the vascular surgeons for daily screening.
Similar content being viewed by others
References
Sims, N. R., and Muyderman, H., Mitochondria, oxidative metabolism and cell death in stroke. Biochim. Biophys. Acta 1802:80–91, 2009.
Labarthe, D. R., Epidemiology and prevention of cardiovascular diseases: a global challenge. Aspen, Gaithersburg, 1998.
Maton, A., Hopkins, R. L. J., McLaughlin, C. W., Johnson, S., Warner, M. Q., LaHart, D., and Wright, J. D., Human biology and health. Prentice Hall, Englewood Cliffs, 1993.
Report on Atherosclerosis: http://en.wikipedia.org/wiki/Atherosclerosis, last accessed in Sept 2010.
North American Symptomatic Carotid Endarterectomy Trial Collaborators, Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N. Engl. J. Med. 325:445–453, 1991.
European Carotid Surgery Trialists’ Collaborative Group, Randomised trial of endarterectomy for recently symptomatic carotid stenosis: Final results of the MRC European Carotid Surgery Trial (ECST). Lancet 351:1379–1387, 1998.
Solberg, L. A., McGarry, P. A., Moossy, J., Strong, J. P., Tejada, C., and Loken, A. C., Severity of atherosclerosis in cerebral arteries, coronary arteries, and aortas. Ann. NY Acad. Sci. 149:956–973, 1968.
Pancioli, A. M., Broderick, J., Kothari, R., Tuchfaber, A., Miller, R., Khoury, J., and Jauch, E., Public perceptions of stroke warning signs and knowledge of potential risk factors. JAMA 279:1288–1292, 1998.
Craven, T., Ryu, J. E., Espeland, M. A., Kahl, F. R., McKinney, W. M., Toole, J. F., Mc Mahan, M. R., Thompson, C. J., Heiss, G., and Crouse, J. R., Evaluation of the associations between carotid artery atherosclerosis and coronary artery stenosis: a case-control study. Circulation 82:1288, 1990.
Kallikazaros, I., Tsioufis, C., Sideris, S., Stefanadis, C., and Toutouzas, P., Carotid artery disease as a marker for presence of severe coronary artery disease in patients evaluated for chest pain. Stroke 30:1002–1007, 1999.
Lerfeldt, B., Forsberg, M., Blomstrand, C., Mellström, D., and Volkmann, R., Cerebral Atherosclerosis as predictor of stroke and mortality in representative elderly population. Stroke 33:224–229, 2002.
Joakimsen, O., Bønaa, K. H., Mathiesen, E. B., Strenland-Bugge, E., and Arnesen, E., Prediction of mortality by ultrasound screening of a general population for carotid stenosis. The Tromsø Study. Stroke 31:1871–1876, 2000.
Chiesa, G., and Sirtori, C. R., Recombinant apolipoprotein A-I(Milano): A novel agent for the induction of regression of atherosclerotic plaques. Ann. Med. 35:267–273, 2003.
Franceschini, G., Vecchio, G., Gianfranceschi, G., Magani, D., and Sirtori, C. R., Apolipoprotein AIMilano. Accelerated binding and dissociation from lipids of a human apolipoprotein variant. J. Biol. Chem. 260:16321–16325, 1985.
Gualandri, V., Franceschini, G., Sirtori, C. R., Gianfranceschi, G., Orsini, G. B., Cerrone, A., and Menotti, A., AIMilano apoprotein identification of the complete kindred and evidence of a dominant genetic transmission. Am. J. Hum. Genet. 37:1083–1097, 1985.
Nissen, S. E., Tsunoda, T., Tuzcu, E. M., Schoenhagen, P., Cooper, C. J., Yasin, M., Eaton, G. M., Lauer, M. A., Sheldon, W. S., Grines, C. L., Halpern, S., Crowe, T., Blankenship, J. C., and Kerensky, R., Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: A randomized controlled trial. J. Am. Med. Assoc. 290:2292–2300, 2003.
Nissen, S. E., Tuzcu, E. M., Schoenhagen, P., Brown, B. G., Ganz, P., Vogel, R. A., Crowe, T., Howard, G., Cooper, C. J., Brodie, B., Grines, C. L., and DeMaria, A. N., REVERSAL investigators. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. J. Am. Med. Assoc. 291:1071–1080, 2004.
Gronholdt, M. L., Nordestgaard, B. G., Schroeder, T. V., Vorstrup, S., and Sillesen, H., Ultrasonic echolucent carotid plaques predict future strokes. Circulation 104:68–73, 2001.
AbuRahma, A. F., Wulu, J. T., Jr., and Crotty, B., Carotid plaque ultrasonic heterogeneity and severity of stenosis. Stroke 33:1772–1775, 2002.
Sabetai, M. M., Tegos, T. J., Nicolaides, A. N., El Atrozy, T. S., Dhanjil, S., Griffin, M., Belcaro, G., and Geroulakos, G., Hemispheric symptoms and carotid plaque echomorphology. J. Vasc. Surg. 31:39–49, 2000.
Hatsukami, T. S., Ferguson, M. S., Beach, K. W., Gordon, D., Detmer, P. R., Burns, D. H., Alpers, C., and Strandness, D. E., Jr., Carotid plaque morphology and clinical events. Stroke 28:95–100, 1997.
Droste, D. W., Karl, M., Bohle, R. M., and Kaps, M., Comparison of ultrasonic and histopathological features of carotid artery stenosis. Neurol. Res. 19:380–384, 1997.
Ringelstein, E. B., Sievers, C., Ecker, S., Schneider, P. A., and Otis, S. M., Noninvasive assessment of CO2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Stroke 19:963–969, 1988.
Bogousslavsky, J., van der Melle, G., and Regli, F., The Lausanne stroke registry: Analysis of 1000 consecutive patients with first stroke. Stroke 19:1083–1092, 1998.
Sitzer, M., Muller, W., Siebler, M., Hort, W., Kneimeyer, H. W., Janke, L., and Steinmtez, H., Plaque ulceration and lumen thrombus are the main sources of cerebral microemboli in high-grade internal carotid artery stenosis. Stroke 26:1231–1233, 1995.
Golledge, J., Cuming, R., Beattie, D. K., Davies, A. H., and Greenhalgh, R. M., Clinical follow-up rather than duplex surveillance following carotid endarterectomy. J. Vasc. Surg. 25:55–63, 1997.
Marcus, H. S., Thomson, N. D., and Brown, M. M., Asymptomatic cerebral embolic signals in symptomatic and asymptomatic carotid artery disease. Brain 118:1005–1011, 1995.
Siebler, M., Nachtmann, A., Sitzer, M., Rose, G., Kleinscmidt, A., Rademacher, J., and Steinmetz, H., Cerebral microembolism and the risk of ischemia in asymptomatic high-grade internal carotid artery stenosis. Stroke 26:2184–2186, 1995.
Schmidt, C., Fagerberg, B., Wirkstrand, J., Hulthe, J., and on behalf of the Ris study group, Multiple risk factor intervention reduces cardiovascular risk in hypertensive patients with echolucent plaques in the carotid artery. J. Intern. Med. 253:430–438, 2003.
Gray-Weale, A. C., Graham, J. C., Burnett, J. R., Byrne, K., and Lusby, R. J., Carotid artery atheroma: comparison of preoperative B-mode ultrasound appearance with carotid endarterectomy specimen pathology. J. Cardiovasc. Surg. 29:676–681, 1988.
Joakimsen, O., Bøona, K. H., and Stensland-Bugge, E., Reproducibility of ultrasound assessment of carotid plaque occurrence, thickness, and morphology. The Tromsø study. Stroke 28:2201–2207, 1997.
Kern, R., Szabo, K., Hennerici, M., and Meairs, S., Plaque characterization using compound ultrasound. Stroke 35:870–875, 2004.
Fuster, V., Badimon, L., Badimon, J. J., and Chesebro, J. H., The pathogenesis of coronary artery disease and the acute coronary syndromes. N. Engl. J. Med. 326:310–8, 1992.
Stoitsis, J., Tsiaparas, N., Golemati, S., Nikit, K. S. Characterization of carotid atherosclerotic plaques using frequency-based texture analysis and bootstrap. In: Proceedings of the 28th IEEE EMBS Annual International Conference New York City, USA, pp. 2392–2395, Aug 30–Sept 3, 2006.
Stoitsis, J., Golemati, S., Tsiaparas, N., Nikita, K. S. Texture Characterization of Carotid Atherosclerotic Plaque from B-mode Ultrasound Using Gabor Filters, in: 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA, pp. 455–458, September 2–6, 2009.
Griffin, M. B., Kyriacou, E., Pattichis, C., Bond, D., Kakkos, S. K., Sabetai, M., Geroulakos, G., Georgiou, N., Doré, C. J., Nicolaides, A., Juxtaluminal gypoechoic area in ultrasonic images of carotid plaques and hemispheric symptoms. J. Vasc. Surg., 2010, in press.
Tegos, T. J., Sohail, M., Sabetai, M. M., Robless, P., Akbar, N., Pare, G., Stansby, G., and Nicolaides, A. N., Echomorphologic and histopathologic characteristics of unstable carotid plaques. Am. J. Neuroradiol. 21:1937–1944, 2000.
Mirmehdi, M., Xie, X., and Suri, J. S., Hand book of texture analysis. Imperial College Press, UK, 2008.
Gonzalez, R. C., and Woods, R. E., Digital image processing, 2nd edition. New Jersey, Prentice Hall, 2001.
Castellano, G., Bonilha, L., Li, L. M., and Cendes, F., Texture analysis of medical images. Clin. Radiol. 59:1061–1069, 2004.
Tan, J. H., EYK, Ng, and Acharya, U. R., Study of normal ocular thermogram using textural parameters. Infrared Phys. Technol. 53:120–126, 2009.
Galloway, M. M., Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4:172–179, 1975.
Aldrich, J., Doing least squares: Perspectives from Gauss and Yule. Int. Stat. Rev. 66:61–81, 1998.
Bayes, T., and Price, R., An essay towards solving a problem in the doctrine of chance. By the late Rev. Mr. Bayes, communicated by Mr. Price, in a letter to John Canton, M. A. and F. R. S. Philos. Trans. R. Soc. Lond. 53:370–418, 1763.
Krzanowski, W. J., Principles of multivariate analysis: a user's perspective. Oxford University Press, New York, 1988.
Stephen, I., Gallant Neural network learning and expert systems. MIT, Cambridge, 1993.
Iba, W., Langley, P. Induction of one-level decision trees. Proceedings of the Ninth International Conference on Machine Learning, 1992.
DeLeo J. Receiver Operating Characteristic Laboratory (ROCLAB): Software for developing decision strategies that account for uncertainty management in artificial neural network decision-making. In: Proceedings of Second International Symposium on Uncertainty Modeling and Analysis, pp. 141–144, 1993.
Downey, T. J., Meyer, D. J., Price, R. K., and Spitznagel, E. L., Using the receiver operating characteristic to assess the performance of neural classifiers. Neural Netw. 5:3642–3646, 1999.
Mougiakakou, S. G., Golemati, S., Gousias, I., Nicolaides, A. N., and Nikita, K. S., Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, laws’ texture and neural networks. Ultrasound Med. Biol. 33:26–36, 2007.
Kyriacou, E., Pattichis, M. S., Christodoulou, C. I., Pattichis, C. S., Kakkos, S., Griffin, M., and Nicolaides, A., Ultrasound Imaging in the analysis of carotid plaque morphology for the assessment of stroke. Stud. Health Technol. Inform. 113:241–75, 2005.
Kyriacou, E., Pattichis, M. S., Pattichis, C. S., Mavrommatis, A., Christodoulou, C. I., Kakkos, S., and Nicolaides, S., Classification of atherosclerotic carotid plaques using morphological analysis on ultrasound images. Appl. Intell. 30:3–23, 2009.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Acharya, R.U., Faust, O., Alvin, A.P.C. et al. Symptomatic vs. Asymptomatic Plaque Classification in Carotid Ultrasound. J Med Syst 36, 1861–1871 (2012). https://doi.org/10.1007/s10916-010-9645-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10916-010-9645-2