Solving Nonlinear Elliptic Inverse Source, Coefficient and Conductivity Problems by the Methods with Bases Satisfying the Boundary Conditions Automatically | Journal of Scientific Computing Skip to main content
Log in

Solving Nonlinear Elliptic Inverse Source, Coefficient and Conductivity Problems by the Methods with Bases Satisfying the Boundary Conditions Automatically

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In the paper, the inverse source, coefficient and conductivity problems of nonlinear elliptic partial differential equations in 2D and 3D regular domains are resolved. For this purpose, two types single-parameter bases that automatically meet the boundary conditions are deduced, namely the first and second bases satisfying boundary conditions method (BSBCM). We solve a linear algebraic equations system which satisfies the over-specified Neumann boundary condition to obtain the unspecified coefficients, and then the solution in the entire domain is permitted. Taking the solution into the governing equation, the unknown source and coefficient functions can be determined quickly. We also develop linear system methods to identify the coefficient and conductivity functions. It is remarkable that we do not need extra boundary data of the conductivity function to resolve the inverse conductivity problem. The present novel methods are verified to be accurate, effective, and robust, which are without solving nonlinear equations and executing iterations, and additional data used are quite economical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Tuan, N.H., Khoa, V.A., Tran, T.: On an inverse boundary value problem of a nonlinear elliptic equation in three dimensions. J. Math. Anal. Appl. 426, 1232–1261 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Qiu, L., Wang, F.J., Lin, J.: A meshless singular boundary method for transient heat conduction problems in layered materials. Comput. Math. Appl. 78, 3544–3562 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Lakkis, O., Pryer, T.: A finite element method for nonlinear elliptic problems. SIAM J. Sci. Comput. 35, A2025–A2045 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gu, Y., Fan, C.M., Qu, W.Z., Wang, F.J., Zhang, C.Z.: Localized method of fundamental solutions for three-dimensional inhomogeneous elliptic problems: theory and MATLAB code. Comput. Mech. 64, 1567–1588 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Xi, Q., Fu, Z.J., Wu, W.J., Wang, H., Wang, Y.: A novel localized collocation solver based on Trefftz basis for potential-based inverse electromyography. Appl. Math. Comput. 390, 125604 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Farcas, A., Elliott, L., Ingham, D.B., Lesnic, D., Mera, N.S.: A dual reciprocity boundary element method for the regularized numerical solution of the inverse source problem associated to the Poisson equation. Inverse Prob. Sci. Eng. 11, 123–139 (2003)

    Article  Google Scholar 

  7. Jin, B.T., Marin, L.: The method of fundamental solutions for inverse source problems associated with the steady-state heat conduction. Int. J. Numer. Methods Eng. 69, 1570–1589 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, F., Chen, W., Ling, L.: Combinations of the method of fundamental solutions for general inverse source identification problems. Appl. Math. Comput. 219, 1173–1182 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, F., Fu, C.L.: The truncation method for identifying an unknown source in the Poisson equation. Appl. Math. Comput. 217, 9334–9339 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, F., Fu, C.L.: The modified regularization method for identifying the unknown source on Poisson equation. Appl. Math. Model. 36, 756–763 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, C.-S.: A BIEM using the Trefftz test functions for solving the inverse Cauchy and source recovery problems. Eng. Anal. Bound. Elem. 62, 177–185 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, C.-S.: An energetic boundary functional method for solving the inverse source problems of 2D nonlinear elliptic equations. Eng. Anal. Bound. Elem. 118, 204–215 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ohe, T., Ohnaka, K.: A precise estimation method for locations in an inverse logarithmic potential problem for point mass models. Appl. Math. Model. 18, 446–452 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nara, T., Ando, S.: A projective method for an inverse source problem of the Poisson equation. Inverse Prob. 19, 355–369 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hon, Y.C., Li, M., Melnikov, Y.A.: Inverse source identification by Green’s function. Eng. Anal. Bound. Elem. 34, 352–358 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, X.X., Guo, H.Z., Wan, S.M., Yang, F.: Inverse source identification by the modified regularization method on Poisson equation. J. Appl. Math. 2012, 971952 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Liu, C.-S., Liu, D.: A homogenization boundary function method for determining inaccessible boundary of a rigid inclusion for the Poisson equation. Eng. Anal. Bound. Elem. 86, 56–63 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, C.-S., Wang, F.: A meshless method for solving the nonlinear inverse Cauchy problem of elliptic type equation in a doubly-connected domain. Comput. Math. Appl. 76, 1837–1852 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Liu, C.-S., Qiu, L., Wang, F.: Nonlinear wave inverse source problem solved by a method of \(m\)-order homogenization functions. Appl. Math. Lett. 91, 90–96 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qiu, L., Hu, C., Qin, Q.-H.: A novel homogenization function method for inverse source problem of nonlinear time-fractional wave equation. Appl. Math. Lett. 109, 106554 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, C.-S., Qiu, L., Lin, J.: Simulating thin plate bending problems by a family of two-parameter homogenization functions. Appl. Math. Model. 79, 284–299 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, C.-S., Qiu, L., Lin, J.: Solving the higher-dimensional nonlinear inverse heat source problems by the superposition of homogenization functions method. Int. J. Heat Mass Transf. 141, 651–657 (2019)

    Article  Google Scholar 

  23. Xi, Q., Fu, Z.J., Rabczuk, T.: An efficient boundary collocation scheme for transient thermal analysis in large-size-ratio functionally graded materials under heat source load. Comput. Mech. 64, 1221–1235 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Qu, W.Z., He, H.: A spatial-temporal GFDM with an additional condition for transient heat conduction analysis of FGMs. Appl. Math. Lett. 110, 106579 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Qiu, L., Lin, J., Wang, F.J., Qin, Q.-H., Liu, C.-S.: A homogenization function method for inverse heat source problems in 3D functionally graded materials. Appl. Math. Model. 91, 923–933 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bachmayr, M., Burger, M.: Iterative total variation schemes for nonlinear inverse problems. Inverse Prob. 25, 105004 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, J., Wang, W., Han, B.: An iteration regularization method with general convex penalty for nonlinear inverse problems in Banach spaces. J. Comput. Appl. Math. 361, 472–486 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Calderón, A.P.: On an inverse boundary value problem. In: Seminar on Numerical Analysis and Its Application to Continuum Physics; Socidade Brasileira de Mathematica: Rio de Janeiro, Brazil, pp. 65–73 (1980)

  29. Kaup, P.G., Santosa, F., Vogelius, M.: Method for imaging corrosion damage in thin plates from electrostatic data. Inverse Prob. 12, 279–293 (1996)

    Article  MATH  Google Scholar 

  30. Santosa, F., Vogelius, M., Xu, J.M.: A non linear elliptic boundary value problem related to corrosion modeling. Quart. Appl. Math. 56, 479–505 (1999)

    Google Scholar 

  31. Liu, C.-S., Chang, C.W.: Solving the inverse conductivity problems of nonlinear elliptic equations by the superposition of homogenization functions method. Appl. Math. Lett. 94, 272–278 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lu, J., Shi, L., Liu, C.-S., Chen, C.S.: Solving inverse conductivity problems in doubly-connected domains by the homogenization functions of two parameters. Mathematics 10, 2256 (2022)

    Article  Google Scholar 

  33. Liu, C.-S., Chang, C.W.: Solving the 3D Cauchy problems of nonlinear elliptic equations by the superposition of a family of 3D homogenization functions. Eng. Anal. Bound. Elem. 105, 122–128 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, C.-S., Kuo, C.L.: A multiple-scale Pascal polynomial triangle solving elliptic equations and inverse Cauchy problems. Eng. Anal. Bound. Elem. 62, 35–43 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Qiu.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CS., Qiu, L. Solving Nonlinear Elliptic Inverse Source, Coefficient and Conductivity Problems by the Methods with Bases Satisfying the Boundary Conditions Automatically. J Sci Comput 95, 42 (2023). https://doi.org/10.1007/s10915-023-02167-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02167-9

Keywords

Navigation