Abstract
In this paper, we are concerned with the stochastic Galerkin methods for time-dependent Maxwell’s equations with random input. The generalized polynomial chaos approach is first adopted to convert the original random Maxwell’s equation into a system of deterministic equations for the expansion coefficients (the Galerkin system). It is shown that the stochastic Galerkin approach preserves the energy conservation law. Then, we propose a finite element approach in the physical space to solve the Galerkin system, and error estimates is presented. For the time domain approach, we propose two discrete schemes, namely, the Crank–Nicolson scheme and the leap-frog type scheme. For the Crank–Nicolson scheme, we show the energy preserving property for the fully discrete scheme. While for the classic leap-frog scheme, we present a conditional energy stability property. It is well known that for the stochastic Galerkin approach, the main challenge is how to efficiently solve the coupled Galerkin system. To this end, we design a modified leap-frog type scheme in which one can solve the coupled system in a decouple way—yielding a very efficient numerical approach. Numerical examples are presented to support the theoretical finding.
Similar content being viewed by others
References
Babuska, I.M., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 435, 1005–1034 (2007)
Babuska, I., Tempone, R., Zouraris, G.: Galerkin finite element approximations of stochastic elliptic differential equations. SIAM J. Numer. Anal. 42, 800–825 (2004)
Balanis, C.A.: Advanced Engineering Electromagnetics, 2nd edn. Wiley, Hoboken, NJ (2012)
Benner, P., Schneider, J.: Uncertainty quantification for Maxwell’s equations using stochastic collocation and model order reduction. Int. J. Uncertain. Quantif. 5(3), 195–208 (2015)
Cao, Y.: On convergence rate of Wiener–Ito expansion for generalized random variables. Stoch. Int. J. Probab. Stoch. Process. 78(3), 179–187 (2006)
Chauviére, C., Hesthaven, J.S., Lurati, L.: Computational modeling of uncertainty in time-domain electromagnetics. SIAM J. Sci. Comput. 28(2), 751–775 (2006)
Deang, J., Du, Q., Gunzburger, M.D.: Modeling and computation of random thermal fluctuations and material defects in the Ginzburg–Landau model for superconductivity. J. Comput. Phys. 181, 45–67 (2002)
Deb, M.K., Babuska, I.M., Oden, J.T.: Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190, 6359–6372 (2001)
Dostert, P., Efendiev, Y., Hou, T.Y.: Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification. Comput. Methods Appl. Mech. Eng. 197, 3445–3455 (2008)
Elman, H.C., Furnival, D.G., Powell, C.E.: \(H({div})\) preconditioning for a mixed finite element formulation of the diffusion problem with random data. Math. Comput. 79, 733–760 (2010)
Fouque, J., Garnier, J., Papanicolaou, G., Solna, K.: Wave Propogation and Time Reversal in Randomly Layered Media. Springer, Berlin (2007)
Galvis, J., Sarkis, M.: Approximating infinity-dimensional stochastic Darcy’s equations without uniform ellipticity. SIAM J. Numer. Anal. 47(5), 3624–3651 (2009)
Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)
Graham, I.G., Kuo, F.Y., Nichols, J.A., Scheichl, R., Schwab, Ch., Sloan, I.H.: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131, 329–368 (2015)
Gunzburger, M.D., Webster, C.G., Zhang, G.: Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23, 521–650 (2014)
Jin, S., Xiu, D., Zhu, X.: A well-balanced stochastic Galerkin method for scalar hyperbolic balance laws with random inputs. J. Sci. Comput. 67(3), 1198–1218 (2016)
Kovacs, M., Larsson, S., Saedpanah, F.: Finite element approximation of the linear stochastic wave equation with additive noise. SIAM J. Numer. Anal. 48, 408–427 (2010)
Li, J., Fang, Z.: Analysis and application of stochastic collocation methods for Maxwell’s equations with random inputs. Adv. Appl. Math. Mech. 10, 1305–1326 (2018)
Li, J., Fang, Z., Lin, G.: Regularity analysis of metamaterial Maxwells equations with random coefficients and initial conditions. Comput. Methods Appl. Mech. Eng. 335, 24–51 (2018)
Li, J., Huang, Y.: Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials. Springer Series in Computational Mathematics, vol. 43. Springer, Berlin (2013)
Li, J., Machorro, E.A., Shields, S.: Numerical study of signal propagation in corrugated coaxial cables. J. Comput. Appl. Math. 309, 230–243 (2017)
Lord, G., Powell, C.E., Shardlow, T.: An Introduction to Computational Stochastic PDEs. Cambridge University Press, Cambridge (2014)
Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)
Motamed, M., Nobile, F., Tempone, R.: A stochastic collocation method for the second order wave equation with a discontinuous random speed. Numer. Math. 123, 493–536 (2013)
Musharbash, E., Nobile, F., Zhou, T.: Error analysis of the dynamically orthogonal approximation of time dependent random PDEs. SIAM J. Sci. Comput. 37(2), A776–A810 (2015)
Narayan, A., Zhou, T.: Stochastic collocation methods on unstructured meshes. Commun. Comput. Phys. 18, 1–36 (2015)
Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)
Oden, J.T., Belytschko, T., Babuska, I., Hughes, T.J.R.: Research directions in computational mechanics. Comput. Methods Appl. Mech. Eng. 192, 913–922 (2003)
Schwab, C., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20, 291–467 (2011)
Tang, T., Zhou, T.: Convergence analysis for stochastic collocation methods to scalar hyperbolic equations with random wave speed. Commun. Comput. Phys. 8(1), 226–248 (2010)
Tryoen, J., LeMaitre, O., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229, 6485–6511 (2010)
Wan, X., Karniadakis, G.E.: Long-term behavior of polynomial chaos in stochastic flow simulations. Comput. Methods Appl. Mech. Eng. 195, 5582–5596 (2006)
Wu, K., Tang, H., Xiu, D.: A stochastic Galerkin method for first-order quasilinear hyperbolic systems with uncertainty. J. Comput. Phys. 345, 224–244 (2017)
Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton (2010)
Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)
Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)
Xiu, D., Shen, J.: Efficient stochastic Galerkin methods for random diffusion equations. J. Comput. Phys. 228(2), 266–281 (2009)
Zhou, T.: Stochastic Galerkin methods for elliptic interface problems with random input. J. Comput. Appl. Math. 236, 782–792 (2011)
Zhou, T., Tang, T.: Galerkin methods for stochastic hyperbolic problems using bi-orthogonal polynomials. J. Sci. Comput. 51, 274–292 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Jichun Li: Work partially supported by NSF Grant DMS-1416742 and NSFC Project 11671340. Tao Tang: Work supported by the NSF of China (under the Grant No. 11731006) and the Science Challenge Project (No. TZ2018001). Tao Zhou: Work supported by the NSF of China (under Grant Nos. 11822111, 11688101, 91630203, 11571351, 11731006), the Science Challenge Project (No. TZ2018001), the National Key Basic Research Program (No. 2018YFB0704304), NCMIS, and the Youth Innovation Promotion Association (CAS).
Rights and permissions
About this article
Cite this article
Fang, Z., Li, J., Tang, T. et al. Efficient Stochastic Galerkin Methods for Maxwell’s Equations with Random Inputs. J Sci Comput 80, 248–267 (2019). https://doi.org/10.1007/s10915-019-00936-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-00936-z