Efficient Stochastic Galerkin Methods for Maxwell’s Equations with Random Inputs | Journal of Scientific Computing Skip to main content
Log in

Efficient Stochastic Galerkin Methods for Maxwell’s Equations with Random Inputs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the stochastic Galerkin methods for time-dependent Maxwell’s equations with random input. The generalized polynomial chaos approach is first adopted to convert the original random Maxwell’s equation into a system of deterministic equations for the expansion coefficients (the Galerkin system). It is shown that the stochastic Galerkin approach preserves the energy conservation law. Then, we propose a finite element approach in the physical space to solve the Galerkin system, and error estimates is presented. For the time domain approach, we propose two discrete schemes, namely, the Crank–Nicolson scheme and the leap-frog type scheme. For the Crank–Nicolson scheme, we show the energy preserving property for the fully discrete scheme. While for the classic leap-frog scheme, we present a conditional energy stability property. It is well known that for the stochastic Galerkin approach, the main challenge is how to efficiently solve the coupled Galerkin system. To this end, we design a modified leap-frog type scheme in which one can solve the coupled system in a decouple way—yielding a very efficient numerical approach. Numerical examples are presented to support the theoretical finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Babuska, I.M., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 435, 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuska, I., Tempone, R., Zouraris, G.: Galerkin finite element approximations of stochastic elliptic differential equations. SIAM J. Numer. Anal. 42, 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balanis, C.A.: Advanced Engineering Electromagnetics, 2nd edn. Wiley, Hoboken, NJ (2012)

    Google Scholar 

  4. Benner, P., Schneider, J.: Uncertainty quantification for Maxwell’s equations using stochastic collocation and model order reduction. Int. J. Uncertain. Quantif. 5(3), 195–208 (2015)

    Article  MathSciNet  Google Scholar 

  5. Cao, Y.: On convergence rate of Wiener–Ito expansion for generalized random variables. Stoch. Int. J. Probab. Stoch. Process. 78(3), 179–187 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chauviére, C., Hesthaven, J.S., Lurati, L.: Computational modeling of uncertainty in time-domain electromagnetics. SIAM J. Sci. Comput. 28(2), 751–775 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deang, J., Du, Q., Gunzburger, M.D.: Modeling and computation of random thermal fluctuations and material defects in the Ginzburg–Landau model for superconductivity. J. Comput. Phys. 181, 45–67 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deb, M.K., Babuska, I.M., Oden, J.T.: Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190, 6359–6372 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dostert, P., Efendiev, Y., Hou, T.Y.: Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification. Comput. Methods Appl. Mech. Eng. 197, 3445–3455 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elman, H.C., Furnival, D.G., Powell, C.E.: \(H({div})\) preconditioning for a mixed finite element formulation of the diffusion problem with random data. Math. Comput. 79, 733–760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fouque, J., Garnier, J., Papanicolaou, G., Solna, K.: Wave Propogation and Time Reversal in Randomly Layered Media. Springer, Berlin (2007)

    MATH  Google Scholar 

  12. Galvis, J., Sarkis, M.: Approximating infinity-dimensional stochastic Darcy’s equations without uniform ellipticity. SIAM J. Numer. Anal. 47(5), 3624–3651 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  14. Graham, I.G., Kuo, F.Y., Nichols, J.A., Scheichl, R., Schwab, Ch., Sloan, I.H.: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131, 329–368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gunzburger, M.D., Webster, C.G., Zhang, G.: Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23, 521–650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jin, S., Xiu, D., Zhu, X.: A well-balanced stochastic Galerkin method for scalar hyperbolic balance laws with random inputs. J. Sci. Comput. 67(3), 1198–1218 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kovacs, M., Larsson, S., Saedpanah, F.: Finite element approximation of the linear stochastic wave equation with additive noise. SIAM J. Numer. Anal. 48, 408–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, J., Fang, Z.: Analysis and application of stochastic collocation methods for Maxwell’s equations with random inputs. Adv. Appl. Math. Mech. 10, 1305–1326 (2018)

    Article  MathSciNet  Google Scholar 

  19. Li, J., Fang, Z., Lin, G.: Regularity analysis of metamaterial Maxwells equations with random coefficients and initial conditions. Comput. Methods Appl. Mech. Eng. 335, 24–51 (2018)

    Article  MathSciNet  Google Scholar 

  20. Li, J., Huang, Y.: Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials. Springer Series in Computational Mathematics, vol. 43. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  21. Li, J., Machorro, E.A., Shields, S.: Numerical study of signal propagation in corrugated coaxial cables. J. Comput. Appl. Math. 309, 230–243 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lord, G., Powell, C.E., Shardlow, T.: An Introduction to Computational Stochastic PDEs. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  23. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  24. Motamed, M., Nobile, F., Tempone, R.: A stochastic collocation method for the second order wave equation with a discontinuous random speed. Numer. Math. 123, 493–536 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Musharbash, E., Nobile, F., Zhou, T.: Error analysis of the dynamically orthogonal approximation of time dependent random PDEs. SIAM J. Sci. Comput. 37(2), A776–A810 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Narayan, A., Zhou, T.: Stochastic collocation methods on unstructured meshes. Commun. Comput. Phys. 18, 1–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oden, J.T., Belytschko, T., Babuska, I., Hughes, T.J.R.: Research directions in computational mechanics. Comput. Methods Appl. Mech. Eng. 192, 913–922 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schwab, C., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20, 291–467 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tang, T., Zhou, T.: Convergence analysis for stochastic collocation methods to scalar hyperbolic equations with random wave speed. Commun. Comput. Phys. 8(1), 226–248 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Tryoen, J., LeMaitre, O., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229, 6485–6511 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wan, X., Karniadakis, G.E.: Long-term behavior of polynomial chaos in stochastic flow simulations. Comput. Methods Appl. Mech. Eng. 195, 5582–5596 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, K., Tang, H., Xiu, D.: A stochastic Galerkin method for first-order quasilinear hyperbolic systems with uncertainty. J. Comput. Phys. 345, 224–244 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  35. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xiu, D., Shen, J.: Efficient stochastic Galerkin methods for random diffusion equations. J. Comput. Phys. 228(2), 266–281 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhou, T.: Stochastic Galerkin methods for elliptic interface problems with random input. J. Comput. Appl. Math. 236, 782–792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhou, T., Tang, T.: Galerkin methods for stochastic hyperbolic problems using bi-orthogonal polynomials. J. Sci. Comput. 51, 274–292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jichun Li: Work partially supported by NSF Grant DMS-1416742 and NSFC Project 11671340. Tao Tang: Work supported by the NSF of China (under the Grant No. 11731006) and the Science Challenge Project (No. TZ2018001). Tao Zhou: Work supported by the NSF of China (under Grant Nos. 11822111, 11688101, 91630203, 11571351, 11731006), the Science Challenge Project (No. TZ2018001), the National Key Basic Research Program (No. 2018YFB0704304), NCMIS, and the Youth Innovation Promotion Association (CAS).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Li, J., Tang, T. et al. Efficient Stochastic Galerkin Methods for Maxwell’s Equations with Random Inputs. J Sci Comput 80, 248–267 (2019). https://doi.org/10.1007/s10915-019-00936-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00936-z

Keywords

Mathematics Subject Classification

Navigation