Abstract
In this paper, we investigate the effect of the filter for the hyperbolic moment equations (HME) (Cai et al. in Commun Pure Appl Math 67(3):464–518, 2014; Cai et al. in SIAM J Sci Comput 35(6):A2807–A2831, 2013) of the Vlasov–Poisson equations and propose a novel quasi time-consistent filter to suppress the numerical recurrence effect. By taking properties of HME into consideration, the filter preserves a lot of physical properties of HME, including Galilean invariance and conservation of mass, momentum and energy. We present two viewpoints—collisional viewpoint and dissipative viewpoint—to dissect the filter, and show that the filtered hyperbolic moment method can be treated as a solver of the Vlasov equation. Numerical simulations of the linear Landau damping and two stream instability demonstrate the effectiveness of the filter in restraining recurrence arising from particle streaming. Both the analysis and the numerical results indicate that the filtered method can capture the evolution of the Vlasov equation, even when phase mixing and filamentation dominate.











Similar content being viewed by others
References
Adjerid, S., Flaherty, J.E.: A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations. SIAM J. Numer. Anal. 23(4), 778–796 (1986)
Armstrong, T.P.: Numerical studies of the nonlinear Vlasov equation. Phys. Fluids 10, 1269–1280 (1967)
Armstrong, T.P., Harding, R.C., Knorr, G., Montgomery, D.: Solution of Vlasov’s equation by transform methods. J. Sci. Comput. 9, 29–86 (1970)
Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)
Birdsall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. McGraw-Hill, New York (2004)
Bourdiec, S.L., Vuyst, F.D., Jacquet, L.: Numerical solution of the Vlasov–Poisson system using generalized Hermite functions. Commun. Comput. Phys. 175(8), 528–544 (2006)
Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Commun. Pure Appl. Math. 67(3), 464–518 (2014)
Cai, Z., Fan, Y., Li, R.: From discrete velocity model to moment method. Math. Numer. Sin. 38(3), 227–244 (2016)
Cai, Z., Fan, Y., Li, R., Lu, T., Wang, Y.: Quantum hydrodynamic model by moment closure of Wigner equation. J. Math. Phys. 53(10), 103503 (2012)
Cai, Z., Li, R., Wang, Y.: Solving Vlasov equation using NR\(xx\) method. SIAM J. Sci. Comput. 35(6), A2807–A2831 (2013)
Cai, Z., Wang, Y.: Suppression of recurrence in the Hermite-spectral method for transport equations. SIAM J. Numer. Anal. 56(5), 3144–3168 (2018)
Camporeale, E., Delzanno, G.L., Bergen, B.K., Moulton, J.D.: On the velocity space discretization for the Vlasov–Poisson system: comparison between implicit Hermite spectral and particle-in-cell methods. Commun. Comput. Phys. 198, 47–58 (2016)
Canuto, C., Hussaini, M.Y., Quarteroni, A.M., Thomas Jr., A., et al.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)
Carrillo, J., Gamba, M., Majorana, A., Shu, C.: A WENO-solver for the transients of Boltzmann–Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525 (2003)
Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)
Cheng, Y., Gamba, M., Morrison, J.: Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems. J. Sci. Comput. 56, 319–349 (2013)
Crouseilles, N., Filbet, F.: Numerical approximation of collisional plasmas by high order methods. J. Comput. Phys. 201(2), 546–572 (2004)
Di, Y., Fan, Y., Li, R.: 13-moment system with global hyperbolicity for quantum gas. J. Stat. Phy. 167(5), 1280–1302 (2017)
Di, Y., Kou, Z., Li, R.: High order moment closure for Vlasov–Maxwell equations. Front. Math. China 10(5), 1087–1100 (2015)
Eliasson, B.: Numerical simulations of the Fourier-transformed Vlasov–Maxwell system in higher dimensions theory and applications. Transp. Theory Stat. Phys. 39(5–7), 387–465 (2010)
Ellasson, B.: Outflow boundary conditions for Fourier transformed one-dimensional Vlasov–Poisson system. J. Sci. Comput. 16, 1–28 (2001)
Fatemi, E., Odeh, F.: Upwind finite difference solution of Boltzmann equation applied to electron transport in semiconductor devices. J. Comput. Phys. 108(2), 209–217 (1993)
Filbet, F.: Convergence of a finite volume scheme for the Vlasov–Poisson system. SIAM J. Numer. Anal. 39(4), 1146–1169 (2001)
Filbet, F., Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun. 150(3), 247–266 (2003)
Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)
Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131 (2001)
Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)
Grant, F.C., Feix, M.R.: Fourier-Hermite solutions of the Vlasov equations in the linearized limit. Phy. Fluids 10(4), 696–702 (1967)
Heath, R.E., Gamba, I.M., Morrison, P.J., Michler, C.: A discontinuous Galerkin method for the Vlasov–Poisson system. J. Comput. Phys. 231(4), 1140–1174 (2012)
Hesthaven, J.S., Kirby, R.: Filtering in Legendre spectral methods. Math. Comput. 77(263), 1425–1452 (2008)
Holloway, J.P.: Spectral velocity discretizations for the Vlasov–Maxwell equations. Transp. Theory Stat. 25(1), 1–32 (1996)
Hou, T., Li, R.: Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226(1), 379–397 (2007)
Joyce, G., Knorr, G., Meier, H.K.: Numerical integration methods of the Vlasov equation. J. Comput. Phys. 8(1), 53–63 (1971)
Kanevsky, A., Carpenter, K., Hesthaven, J.S.: Idempotent filtering in spectral and spectral element methods. J. Comput. Phys. 220(1), 41–58 (2006)
Klimas, A.J.: A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions. J. Comput. Phys. 68(1), 202–226 (1987)
Klimas, A.J., Farrell, W.M.: A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110(1), 150–163 (1994)
Kreiss, H.O., Oliger, J.: Stability of the Fourier method. SIAM J. Numer. Anal. 16, 421–433 (1979)
Landau, L.: On the vibrations of the electronic plasma. Eur. J. Org. Chem. 2006(2), 498–506 (1946)
McClarren, R.G., Hauck, C.D.: Robust and accurate filtered spherical harmonics expansions for radiative transfer. J. Comput. Phys. 229(16), 5597–5614 (2010)
Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, Second Edition, Volume 37 of Springer tracts in natural philosophy. Springer, New York (1998)
Ng, C.S., Bhattacharjee, A., Skiff, F.: Complete spectrum of kinetic eigenmodes for plasma oscillations in a weakly collisional plasma. Phys. Rev. Lett. 92(6), 065002 (2004)
Parker, J.T., Dellar, P.J.: Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit. J. Plasma Phys. 81(02), 305810203 (2015)
Qiu, J., Shu, C.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230(23), 8386–8409 (2011)
Schumer, J.W., Holloway, J.P.: Vlasov simulation using velocity-scaled Hermite representations. J. Comput. Phys. 144(2), 626–661 (1998)
Shoucri, M., Knorr, G.: Numerical integration of the Vlasov equation. J. Comput. Phys. 14(1), 84–92 (1974)
Sonnendrücker, E., Roche, J., Betrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of Vlasov equations. J. Comput. Phys 149(2), 201–220 (1998)
Torrilhon, M.: Two dimensional bulk microflow simulations based on regularized Grad’s 13-moment equations. SIAM J. Multiscale Model. Simul. 5(3), 695–728 (2006)
Vlasov, A.A.: On vibration properties of electron gas. J. Exp. Theor. Phys. 8(3), 291 (1938)
Zaki, S.I., Gardner, R.T., Boyd, T.J.: A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory. J. Comput. Phys. 79, 184–199 (1988)
Acknowledgements
This research of Y. Di is supported in part by the Natural Science Foundation of China (Grant Nos. 11771437 and 91630208). And that of Y. Wang is supported in part by the Natural Science Foundation of China No. 11501042. R. Li is supported in part by the National Natural Science Foundation of China (Grant No. 9163030002).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Di, Y., Fan, Y., Kou, Z. et al. Filtered Hyperbolic Moment Method for the Vlasov Equation. J Sci Comput 79, 969–991 (2019). https://doi.org/10.1007/s10915-018-0882-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0882-8