A Fast Discontinuous Galerkin Method for a Bond-Based Linear Peridynamic Model Discretized on a Locally Refined Composite Mesh | Journal of Scientific Computing
Skip to main content

A Fast Discontinuous Galerkin Method for a Bond-Based Linear Peridynamic Model Discretized on a Locally Refined Composite Mesh

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a family of fast discontinuous Galerkin (DG) finite element methods for a bond-based linear peridynamic (PD) model in one space dimension. More precisely, we develop a preconditioned fast piecewise-constant DG scheme on a geometrically graded locally refined composite mesh which is suited for the scenario in which the jump discontinuity of the displacement field occurs at the one of the nodes in the original uniform partition. We also develop a preconditioned fast piecewise-linear DG scheme on a uniform mesh that has a second-order convergence rate when the jump discontinuity occurs at one of the computational nodes or has a convergence rate of one-half order otherwise. Motivated by these results, we develop a preconditioned fast hybrid DG scheme that is discretized on a locally uniformly refined composite mesh to numerically simulate the PD model where the jump discontinuity of the displacement field occurs inside a computational cell. We use a piecewise-constant DG scheme on a uniform mesh and a piecewise-linear DG scheme on a locally uniformly refined mesh of mesh size \(O(h^2)\), which has an overall convergence rate of O(h). Because of their nonlocal nature, numerical methods for PD models generate dense stiffness matrices which have \(O(N^2)\) memory requirement and \(O(N^3)\) computational complexity, where N is the number of computational nodes. In this paper, we explore the structure of the stiffness matrices to develop three preconditioned fast Krylov subspace iterative solvers for the DG method. Consequently, the methods have significantly reduced computational complexity and memory requirement. Numerical results show the utility of the numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. ELsevier, San Diego (2003)

    MATH  Google Scholar 

  2. Bobaru, F., Yang, M., Alves, L., Silling, S., Askari, E., Xu, J.: Convergence, adaptive refinement, and scaling in 1D peridynamics. Int. J. Numer. Methods Eng. 77(6), 852–877 (2009)

    Article  MATH  Google Scholar 

  3. Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, T.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput. 9, 766–771 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, X., Gunzburger, M.: Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. 200, 1237–1250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Davis, P.J.: Circulant Matrices. Wiley-Intersciences, New York (1979)

    MATH  Google Scholar 

  7. Dayal, K., Bhattacharya, K.: Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54, 1811–1842 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, W.: Finite element bethod for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  Google Scholar 

  9. DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dörfler, W.: A convergent adaptive algorithm for Poissons equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996). https://doi.org/10.1137/0733054

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, Q., Ju, L., Tian, L., Zhou, K.: A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models. Math. Comput. 82, 1889–1922 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, Q., Tian, L., Zhao, X.: A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models. SIAM J. Numer. Anal. 51(2), 1211–1234 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Emmrich, E., Weckner, O.: The peridynamic equation and its spatial discretisation. Math. Model. Anal. 12, 17–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007)

    Article  Google Scholar 

  15. Ghajari, M., Iannucci, L., Curtis, P.: A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Comput. Methods Appl. Mech. Eng. 276, 431–452 (2014)

    Article  MathSciNet  Google Scholar 

  16. Ha, Y.D., Bobaru, F.: Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78, 1156–1168 (2011)

    Article  Google Scholar 

  17. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  18. Jia, J., Wang, H.: A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J. Comput. Phys. 299, 842–862 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lai, X., Ren, B., Fan, H., Li, S., Wu, C.T., Regueiro, R.A., Liu, L.: Peridynamics simulations of geomaterial fragmentation by impulse loads. Int. J. Numer. Anal. Meth. Geomech. 39, 1304–1330 (2015)

    Article  Google Scholar 

  20. Li, C., Ding, H.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)

    Article  MathSciNet  Google Scholar 

  21. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lynch, V.E., Carreras, B.A., del-Castillo-Negrete, D., Ferreira-Mejias, K.M., Hicks, H.R.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406–421 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mitchell, J.A.: A nonlocal, ordinary, state-based plasticity model for peridynamics. Sandia Report SAND 2011-3166, May 2011

  25. Oterkus, E., Madenci, E., Weckner, O., Silling, S., Bogert, P.: Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Compos. Struct. 94, 839–850 (2012)

    Article  Google Scholar 

  26. Seleson, P., Du, Q., Parks, M.L.: On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models. Comput. Methods Appl. Mech. Eng. 311, 698–722 (2016)

    Article  MathSciNet  Google Scholar 

  27. Seleson, P., Littlewood, D.: Convergence studies in meshfree peridynamic simulations. Comput. Math. Appl. 71, 2432–2448 (2016)

    Article  MathSciNet  Google Scholar 

  28. Seleson, P., Parks, M.L.: On the role of the infuence function in the peridynamic theory. Int. J. Multiscale Comput. Eng. 9, 689–706 (2011)

    Article  Google Scholar 

  29. Silling, S.: Reformulation of elasticity theory for discontinuous and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Silling, S., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)

    Article  Google Scholar 

  31. Silling, S., Epton, M., Wecker, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Silling, S., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. 162, 219–227 (2010)

    Article  MATH  Google Scholar 

  33. Sun, S., Sundararaghavan, V.: A peridynamic implementation of crystal plasticity. Int. J. Solids Struct. 51, 3350–3360 (2014)

    Article  Google Scholar 

  34. Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51, 3458–3482 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tian, H., Wang, H., Wang, W.: An efficient collocation method for a non-local diffusion model. Int. J. Numer. Anal. Model. 10, 815–825 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Wang, C., Wang, H.: A fast collocation method for a variable-coefficient nonlocal diffusion model. J. Comput. Phys. 330, 114–126 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, H., Tian, H.: A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model. J. Comput. Phys. 231, 7730–7738 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, H., Tian, H.: A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model. Comput. Methods Appl. Mech. Eng. 273, 19–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xu, F., Gunzburger, M., Burkardt, J., Du, Q.: A multiscale implementation based on adaptive mesh refinement for the nonlocal peridynamics model in one dimension. Multiscale Model. Simul. 14(1), 398–429 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, F., Gunzburger, M., Burkardt, J.: A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions. Comput. Method Appl. Mech. Eng. 307, 117–143 (2016)

    Article  MathSciNet  Google Scholar 

  42. Zhang, X., Wang, H.: A fast method for a steady-state bond-based peridynamic model. Comput. Methods Appl. Mech. Eng. 311, 280–303 (2016)

    Article  Google Scholar 

  43. Zhao, M., Cheng, A., Wang, H.: A preconditioned fast Hermite finite element method for space-fractional diffusion equations. Discrete Contin. Dyn. B 22(9), 3529–3545 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary condition. SIAM J. Numer. Anal. 48, 1759–1780 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the editor and referees for their very helpful comments and suggestions, which greatly improved the quality of this paper. This work was supported in part by the OSD/ARO MURI Grant W911NF-15-1-0562, by the National Natural Science Foundation of China under Grants 11471194, 11571115, and 91630207, by the National Science Foundation under Grant DMS-1620194, by the National Science and Technology Major Project of China under Grants 2011ZX05052 and 2011ZX05011-004, and by Shandong Provincial Natural Science Foundation, China under Grant ZR2011AM015, and by Taishan Scholars Program of Shandong Province of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aijie Cheng or Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Cheng, A. & Wang, H. A Fast Discontinuous Galerkin Method for a Bond-Based Linear Peridynamic Model Discretized on a Locally Refined Composite Mesh. J Sci Comput 76, 913–942 (2018). https://doi.org/10.1007/s10915-018-0645-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0645-6

Keywords