A Second-Order Operator Splitting Fourier Spectral Method for Models of Epitaxial Thin Film Growth | Journal of Scientific Computing
Skip to main content

A Second-Order Operator Splitting Fourier Spectral Method for Models of Epitaxial Thin Film Growth

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop an operator splitting Fourier spectral method for models of epitaxial thin film growth with and without slope selection. A main idea of the method is to split the original equation into linear and nonlinear parts, and then to evolve one step which consists of three substeps. The linear part is solved by the spectral method, which has a closed-form solution in the Fourier space. And the nonlinear part is also solved by the spectral method combined with the Crank–Nicolson type method. We numerically demonstrate that our method achieves spectral accuracy in space and second-order accuracy in time and alleviates restriction on the time step. We also perform long time simulations for the coarsening process to show the capability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ehrlich, G., Hudda, F.G.: Atomic view of surface self-diffusion: Tungsten on tungsten. J. Chem. Phys. 44, 1039–1049 (1966)

    Article  Google Scholar 

  2. Schwoebel, R.L., Shipsey, E.J.: Step motion on crystal surfaces. J. Appl. Phys. 37, 3682–3686 (1966)

    Article  Google Scholar 

  3. Schwoebel, R.L.: Step motion on crystal surfaces. II. J. Appl. Phys. 40, 614–618 (1969)

    Article  Google Scholar 

  4. Ortiz, M., Repetto, E.A., Si, H.: A continuum model of kinetic roughening and coarsening in thin films. J. Mech. Phys. Solids 47, 697–730 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Johnson, M.D., Orme, C., Hunt, A.W., Graff, D., Sudijono, J., Sander, L.M., Orr, B.G.: Stable and unstable growth in molecular beam epitaxy. Phys. Rev. Lett. 72, 116–119 (1994)

    Article  Google Scholar 

  6. King, B.B., Stein, O., Winkler, M.: A fourth-order parabolic equation modeling epitaxial thin film growth. J. Math. Anal. Appl. 286, 459–490 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, B., Liu, J.-G.: Thin film epitaxy with or without slope selection. Eur. J. Appl. Math. 14, 713–743 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Moldovan, D., Golubović, L.: Interfacial coarsening dynamics in epitaxial growth with slope selection. Phys. Rev. E 61, 6190–6214 (2000)

    Article  Google Scholar 

  9. Golubović, L.: Interfacial coarsening in epitaxial growth models without slope selection. Phys. Rev. Lett. 78, 90–93 (1997)

    Article  Google Scholar 

  10. Wang, C., Wang, X., Wise, S.M.: Unconditionally stable schemes for equations of thin film epitaxy. DCDS-A 28, 405–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eyre, D.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Proc. 529, 39–46 (1998)

    Article  MathSciNet  Google Scholar 

  12. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 59, 574–601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chertock, A., Doering, C.R., Kashdan, E., Kurganov, A.: A fast explicit operator splitting method for passive scalar advection. J. Sci. Comput. 45, 200–214 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, H.G., Lee, J.-Y.: A semi-analytical Fourier spectral method for the Allen–Cahn equation. Comput. Math. Appl. 68, 174–184 (2014)

    Article  MathSciNet  Google Scholar 

  18. Lee, H.G., Lee, J.-Y.: A second order operator splitting method for Allen–Cahn type equations with nonlinear source terms. Phys. A 432, 24–34 (2015)

    Article  MathSciNet  Google Scholar 

  19. Lee, H.G., Shin, J., Lee, J.-Y.: First and second order operator splitting methods for the phase field crystal equation. J. Comput. Phys. 299, 82–91 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kao, C.-Y., Kurganov, A., Qu, Z., Wang, Y.: A fast explicit operator splitting method for modified Buckley–Leverett equations. J. Sci. Comput. 64, 837–857 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jahnke, T., Lubich, C.: Error bounds for exponential operator splittings. BIT Numer. Math. 40, 735–744 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lubich, C.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)

    Article  MATH  Google Scholar 

  23. Chertock, A., Kurganov, A., Petrova, G.: Fast explicit operator splitting method for convection-diffusion equations. Int. J. Numer. Methods Fluids 59, 309–332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Holden, H., Karlsen, K.H., Risebro, N.H., Tao, T.: Operator splitting for the KdV equation. Math. Comput. 80, 821–846 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Holden, H., Lubich, C., Risebro, N.H.: Operator splitting for partial differential equations with Burgers nonlinearity. Math. Comput. 82, 173–185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cheng, Y., Kurganova, A., Qu, Z., Tang, T.: Fast and stable explicit operator splitting methods for phase-field models. J. Comput. Phys. 303, 45–65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Medovikov, A.A.: High order explicit methods for parabolic equations. BIT Numer. Math. 38, 372–390 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, B., Liu, J.-G.: Epitaxial growth without slope selection: energetics, coarsening, and dynamic scaling. J. Nonlinear Sci. 14, 429–451 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to June-Yub Lee.

Additional information

This research was supported by the RP-Grant 2016 of Ewha Womans University and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea government MOE (2009-0093827) and MSIP (2015-003037).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.G., Shin, J. & Lee, JY. A Second-Order Operator Splitting Fourier Spectral Method for Models of Epitaxial Thin Film Growth. J Sci Comput 71, 1303–1318 (2017). https://doi.org/10.1007/s10915-016-0340-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0340-4

Keywords

Mathematics Subject Classification