Abstract
In this paper, a new two-parameter family of regularized kernels is introduced, suitable for applying high-order time stepping to N-body systems. These high-order kernels are derived by truncating a Taylor expansion of the non-regularized kernel about \((r^2+\epsilon ^2)\), generating a sequence of increasingly more accurate kernels. This paper proves the validity of this two-parameter family of regularized kernels, constructs error estimates, and illustrates the benefits of using high-order kernels through numerical experiments.
Similar content being viewed by others
Notes
If the simplified expression for \(\frac{\partial G^{\epsilon ,n}}{\partial r}\) in Eq. (8) is used, one recovers the same expression involving the hypergeomtric function.
References
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC (1964)
Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics. Dover Publications (1971)
Beale, J.: A grid-based boundary integral method for elliptic problems in three dimensions. SIAM J. Numer. Anal. 42(2), 599–620 (2004)
Christlieb, A., Krasny, R., Verboncoeur, J.: A treecode algorithm for simulating electron dynamics in a Penning–Malmberg trap. Comput. Phys. Commun. 164(1–3), 306–310 (2004a)
Christlieb, A., Krasny, R., Verboncoeur, J.: Efficient particle simulation of a virtual cathode using a grid-free treecode Poisson solver. IEEE Trans. Plasma Sci. 32(2 Part 1), 384–389 (2004b)
Christlieb, A., Krasny, R., Verboncoeur, J., Emhoff, J., Boyd, I.: Grid-free plasma simulation techniques. IEEE Trans. Plasma Sci. 34(2 Part 1), 149–165 (2006)
Cortez, R.: The method of regularized stokeslets. SIAM J. Sci. Comput. 23(4), 1204–1225 (2001)
Cortez, R., Minion, M.: The blob projection method for immersed boundary problems. J. Comput. Phys. 161(2), 428–453 (2000). doi:10.1006/jcph.2000.6502. http://www.sciencedirect.com/science/article/pii/S0021999100965021
Faou, E., Hairer, E., Pham, T.L.: Energy conservation with non-symplectic methods: examples and counter-examples. BIT Numer. Math. 44(4), 699–709 (2004). doi:10.1007/s10543-004-5240-6
Forest, E., Ruth, R.D.: Fourth-order symplectic integration. Phys. D 43(1), 105–117 (1990). doi:10.1016/0167-2789(90)90019-L
Gibbon, P., Speck, R., Karmakar, A., Arnold, L., Frings, W., Berberich, B., Reiter, D., Masek, M.: Progress in mesh-free plasma simulation with parallel tree codes. IEEE Trans. Plasma Sci. 38(9), 2367–2376 (2010)
Hejlesen, M.M., Rasmussen, J.T., Chatelain, P., Walther, J.H.: A high order solver for the unbounded Poisson equation. J. Comput. Phys. 252, 458–467 (2013). doi:10.1016/j.jcp.2013.05.050
Hosseini, B., Nigam, N., Stockie, J.M.: On regularizations of the Dirac delta distribution. J. Comput. Phys. 305, 423–447 (2016)
Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)
Krasny, R.: Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65(2), 292–313 (1986)
Krasny, R.: Computation of vortex sheet roll-up in the Trefftz plane. J. Fluid Mech. 184, 123–155 (1987)
Leonard, A.: Vortex methods for flow simulation. J. Comput. Phys. 37(3), 289–335 (1980). doi:10.1016/0021-9991(80)90040-6
Li, P., Johnston, H., Krasny, R.: A cartesian treecode for screened coulomb interactions. J. Comput. Phys. 228(10), 3858–3868 (2009). doi:10.1016/j.jcp.2009.02.022. http://www.sciencedirect.com/science/article/pii/S0021999109000916
Lindsay, K., Krasny, R.: A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow. J. Comput. Phys. 172(2), 879–907 (2001)
Majda, A., Majda, G., Zheng, Y.: Concentrations in the one-dimensional Vlasov–Poisson equations, I: temporal development and non-unique weak solutions in the single component case. Phys. D 74(3–4), 268–300 (1994)
Rostami, M.W., Olson, S.D.: Kernel-independent fast multipole method within the framework of regularized stokeslets. J. Fluids Struct. (2015). Under review
Ruth, R.D.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30(4), 2669–2671 (1983). doi:10.1109/TNS.1983.4332919
Salmon, J., Warren, M.: Skeletons from the treecode closet. J. Comput. Phys. 111(1), 136–155 (1994)
Simó, C.: New families of solutions in N-body problems. In: Casacuberta, C., Miro-Roig, R.M., Verdera, J., Xambo-Descamps, S. (eds.) European Congress of Mathematics. Progress in Mathematics, vol. 201, pp. 101–115. Birkhäuser, Basel (2001)
Wee, D., Marzouk, Y.M., Schlegel, F., Ghoniem, A.F.: Convergence characteristics and computational cost of two algebraic kernels in vortex methods with a tree-code algorithm. SIAM J. Sci. Comput. 31(4), 2510–2527 (2009). doi:10.1137/080726872
Winckelmans, G.S., Leonard, A.: Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows. J. Comput. Phys. 109(2), 247–273 (1993). doi:10.1006/jcph.1993.1216
Acknowledgements
The authors would like to thank Robert Krasny, Keith Cartwright, John Verboncoeur, John Luginsland, Matthew Bettencourt, and Andrew Greenwood for their insightful discussions regarding this work, as well as anonymous referees who have made valuable suggestions to improve the presentation of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ong, B.W., Christlieb, A.J. & Quaife, B.D. A New Family of Regularized Kernels for the Harmonic Oscillator. J Sci Comput 71, 1212–1237 (2017). https://doi.org/10.1007/s10915-016-0336-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-016-0336-0