A New Family of Regularized Kernels for the Harmonic Oscillator | Journal of Scientific Computing
Skip to main content

A New Family of Regularized Kernels for the Harmonic Oscillator

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a new two-parameter family of regularized kernels is introduced, suitable for applying high-order time stepping to N-body systems. These high-order kernels are derived by truncating a Taylor expansion of the non-regularized kernel about \((r^2+\epsilon ^2)\), generating a sequence of increasingly more accurate kernels. This paper proves the validity of this two-parameter family of regularized kernels, constructs error estimates, and illustrates the benefits of using high-order kernels through numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. If the simplified expression for \(\frac{\partial G^{\epsilon ,n}}{\partial r}\) in Eq. (8) is used, one recovers the same expression involving the hypergeomtric function.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC (1964)

  2. Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics. Dover Publications (1971)

  3. Beale, J.: A grid-based boundary integral method for elliptic problems in three dimensions. SIAM J. Numer. Anal. 42(2), 599–620 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christlieb, A., Krasny, R., Verboncoeur, J.: A treecode algorithm for simulating electron dynamics in a Penning–Malmberg trap. Comput. Phys. Commun. 164(1–3), 306–310 (2004a)

    Article  MATH  Google Scholar 

  5. Christlieb, A., Krasny, R., Verboncoeur, J.: Efficient particle simulation of a virtual cathode using a grid-free treecode Poisson solver. IEEE Trans. Plasma Sci. 32(2 Part 1), 384–389 (2004b)

    Article  Google Scholar 

  6. Christlieb, A., Krasny, R., Verboncoeur, J., Emhoff, J., Boyd, I.: Grid-free plasma simulation techniques. IEEE Trans. Plasma Sci. 34(2 Part 1), 149–165 (2006)

    Article  Google Scholar 

  7. Cortez, R.: The method of regularized stokeslets. SIAM J. Sci. Comput. 23(4), 1204–1225 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cortez, R., Minion, M.: The blob projection method for immersed boundary problems. J. Comput. Phys. 161(2), 428–453 (2000). doi:10.1006/jcph.2000.6502. http://www.sciencedirect.com/science/article/pii/S0021999100965021

  9. Faou, E., Hairer, E., Pham, T.L.: Energy conservation with non-symplectic methods: examples and counter-examples. BIT Numer. Math. 44(4), 699–709 (2004). doi:10.1007/s10543-004-5240-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Forest, E., Ruth, R.D.: Fourth-order symplectic integration. Phys. D 43(1), 105–117 (1990). doi:10.1016/0167-2789(90)90019-L

    Article  MathSciNet  MATH  Google Scholar 

  11. Gibbon, P., Speck, R., Karmakar, A., Arnold, L., Frings, W., Berberich, B., Reiter, D., Masek, M.: Progress in mesh-free plasma simulation with parallel tree codes. IEEE Trans. Plasma Sci. 38(9), 2367–2376 (2010)

    Article  Google Scholar 

  12. Hejlesen, M.M., Rasmussen, J.T., Chatelain, P., Walther, J.H.: A high order solver for the unbounded Poisson equation. J. Comput. Phys. 252, 458–467 (2013). doi:10.1016/j.jcp.2013.05.050

    Article  MathSciNet  MATH  Google Scholar 

  13. Hosseini, B., Nigam, N., Stockie, J.M.: On regularizations of the Dirac delta distribution. J. Comput. Phys. 305, 423–447 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)

    MATH  Google Scholar 

  15. Krasny, R.: Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65(2), 292–313 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krasny, R.: Computation of vortex sheet roll-up in the Trefftz plane. J. Fluid Mech. 184, 123–155 (1987)

    Article  Google Scholar 

  17. Leonard, A.: Vortex methods for flow simulation. J. Comput. Phys. 37(3), 289–335 (1980). doi:10.1016/0021-9991(80)90040-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, P., Johnston, H., Krasny, R.: A cartesian treecode for screened coulomb interactions. J. Comput. Phys. 228(10), 3858–3868 (2009). doi:10.1016/j.jcp.2009.02.022. http://www.sciencedirect.com/science/article/pii/S0021999109000916

  19. Lindsay, K., Krasny, R.: A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow. J. Comput. Phys. 172(2), 879–907 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Majda, A., Majda, G., Zheng, Y.: Concentrations in the one-dimensional Vlasov–Poisson equations, I: temporal development and non-unique weak solutions in the single component case. Phys. D 74(3–4), 268–300 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rostami, M.W., Olson, S.D.: Kernel-independent fast multipole method within the framework of regularized stokeslets. J. Fluids Struct. (2015). Under review

  22. Ruth, R.D.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30(4), 2669–2671 (1983). doi:10.1109/TNS.1983.4332919

    Article  Google Scholar 

  23. Salmon, J., Warren, M.: Skeletons from the treecode closet. J. Comput. Phys. 111(1), 136–155 (1994)

    Article  MATH  Google Scholar 

  24. Simó, C.: New families of solutions in N-body problems. In: Casacuberta, C., Miro-Roig, R.M., Verdera, J., Xambo-Descamps, S. (eds.) European Congress of Mathematics. Progress in Mathematics, vol. 201, pp. 101–115. Birkhäuser, Basel (2001)

  25. Wee, D., Marzouk, Y.M., Schlegel, F., Ghoniem, A.F.: Convergence characteristics and computational cost of two algebraic kernels in vortex methods with a tree-code algorithm. SIAM J. Sci. Comput. 31(4), 2510–2527 (2009). doi:10.1137/080726872

    Article  MathSciNet  MATH  Google Scholar 

  26. Winckelmans, G.S., Leonard, A.: Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows. J. Comput. Phys. 109(2), 247–273 (1993). doi:10.1006/jcph.1993.1216

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Robert Krasny, Keith Cartwright, John Verboncoeur, John Luginsland, Matthew Bettencourt, and Andrew Greenwood for their insightful discussions regarding this work, as well as anonymous referees who have made valuable suggestions to improve the presentation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin W. Ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, B.W., Christlieb, A.J. & Quaife, B.D. A New Family of Regularized Kernels for the Harmonic Oscillator. J Sci Comput 71, 1212–1237 (2017). https://doi.org/10.1007/s10915-016-0336-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0336-0

Keywords

Mathematics Subject Classification