Abstract
In plasma simulations, where the speed of light divided by a characteristic length is at a much higher frequency than other relevant parameters in the underlying system, such as the plasma frequency, implicit methods begin to play an important role in generating efficient solutions in these multi-scale problems. Under conditions of scale separation, one can rescale Maxwell’s equations in such a way as to give a magneto static limit known as the Darwin approximation of electromagnetics. In this work, we present a new approach to solve Maxwell’s equations based on a Method of Lines Transpose (\(\hbox {MOL}^T\)) formulation, combined with a fast summation method with computational complexity \(O(N\log {N})\), where N is the number of grid points (particles). Under appropriate scaling, we show that the proposed schemes result in asymptotic preserving methods that can recover the Darwin limit of electrodynamics.
Similar content being viewed by others
References
Assous, F., Degond, P., Segré, J.: Numerical approximation of the Maxwell equations in inhomogeneous media by P1 conforming finite element method. J. Comput. Phys. 128(2), 363–380 (1996)
Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind, vol. 4. Cambridge University Press, Cambridge (1997)
Barnes, J., Hut, P.: A hierarchical \(O(N \log N)\) force-calculation algorithm. Nature 324, 446–449 (1986)
Bennoune, M., Lemou, M., Mieussens, L.: Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier–Stokes asymptotics. J. Comput. Phys. 227(8), 3781–3803 (2008)
Besse, N., Mauser, N., Sonnendrücker, E.: Numerical approximation of self-consistent Vlasov models for low-frequency electromagnetic phenomena. Int. J. Appl. Math. Comput. Sci. 17(3), 361–374 (2007)
Causley, M., Christlieb, A.: Higher order A-stable schemes for the wave equation using a successive convolution approach. SIAM J. Numer. Anal. 52(1), 220–235 (2014)
Causley, M., Christlieb, A., Ong, B., Van Groningen, L.: Method of Lines Transpose: an implicit solution to the wave equation. Math. Comput. 83(290), 2763–2786 (2014)
Causley, M.F., Christlieb, A., Güçlü, Y., Wolf, E.: Method of Lines Transpose: a fast implicit wave propagator (2013). arXiv preprint arXiv:1306.6902
Christlieb, A., Krasny, R., Verboncoeur, J., Emhoff, J., Boyd, I.: Grid-free plasma simulation techniques. IEEE Trans. Plasma Sci. 34(2), 149–165 (2006)
Ciarlet, P., Jamelot, E.: Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries. J. Comput. Phys. 226(1), 1122–1135 (2007)
Ciarlet Jr., P., Zou, J.: Finite element convergence for the Darwin model to Maxwell’s equations. RAIRO-Modélisation mathématique et analyse numérique 31(2), 213–249 (1997)
Darve, E.: The fast multipole method: numerical implementation. J. Comput. Phys. 160(1), 195–240 (2000)
Darwin, C.: The dynamical motions of charged particles. Lond. Edinb. Dublin Philos. Mag. J. Sci. 39(233), 537–551 (1920)
De Flaviis, F., Noro, M.G., Diaz, R.E., Franceschetti, G., Alexopoulos, N.G.: A time-domain vector potential formulation for the solution of electromagnetic problems. IEEE Microw. Guid. Wave Lett. 8(9), 310–312 (1998)
Degond, P., Deluzet, F., Savelief, D.: Numerical approximation of the Euler–Maxwell model in the quasineutral limit. J. Comput. Phys. 231(4), 1917–1946 (2012)
Degond, P., Liu, J.-G., Vignal, M.: Analysis of an asymptotic preserving scheme for the Euler–Poisson system in the quasineutral limit. SIAM J. Numer. Anal. 46(3), 1298–1322 (2008)
Degond, P., Raviart, P.-A.: An analysis of the Darwin model of approximation to Maxwell’s equations. Forum Math. 4, 13–44 (1992)
Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)
Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229(20), 7625–7648 (2010)
Geng, W., Krasny, R.: A treecode-accelerated boundary integral Poisson–Boltzmann solver for electrostatics of solvated biomolecules. J. Comput. Phys. 247, 62–78 (2013)
Gibbon, P., Speck, R., Karmakar, A., Arnold, L., Frings, W., Berberich, B., Reiter, D., Masek, M.: Progress in mesh-free plasma simulation with parallel tree codes. IEEE Trans. Plasma Sci. 38(9), 2367–2376 (2010)
Gimbutas, Z., Rokhlin, V.: A generalized fast multipole method for nonoscillatory kernels. SIAM J. Sci. Comput. 24(3), 796–817 (2002)
Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)
Guiggiani, M., Gigante, A.: A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method. J. Appl. Mech. 57(4), 906–915 (1990)
Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Lecture notes for summer school on methods and models of kinetic theory (M&MKT), Porto Ercole (Grosseto, Italy), pp. 177–216 (2010)
Li, P., Johnston, H., Krasny, R.: A Cartesian treecode for screened Coulomb interactions. J. Comput. Phys. 228(10), 3858–3868 (2009)
Mašek, M., Gibbon, P.: Mesh-free magnetoinductive plasma model. IEEE Trans. Plasma Sci. 38(9), 2377–2382 (2010)
Masmoudi, N., Mauser, N.J.: The selfconsistent Pauli equation. Monatshefte für Mathematik 132(1), 19–24 (2001)
Nishimura, N.: Fast multipole accelerated boundary integral equation methods. Appl. Mech. Rev. 55(4), 299–324 (2002)
Otani, Y., Nishimura, N.: A periodic FMM for Maxwells equations in 3D and its applications to problems related to photonic crystals. J. Comput. Phys. 227(9), 4630–4652 (2008)
Pieraccini, S., Puppo, G.: Implicit–explicit schemes for BGK kinetic equations. J. Sci. Comput. 32(1), 1–28 (2007)
Pieraccini, S., Puppo, G.: Microscopically implicit-macroscopically explicit schemes for the BGK equation. J. Comput. Phys. 231(2), 299–327 (2012)
Raviart, P.-A., Sonnendrücker, E.: Approximate models for the Maxwell equations. J. Comput. Appl. Math. 63(1), 69–81 (1995)
Raviart, P.-A., Sonnendrücker, E.: A hierarchy of approximate models for the Maxwell equations. Numer. Math. 73(3), 329–372 (1996)
Salazar, A.J., Raydan, M., Campo, A.: Theoretical analysis of the Exponential Transversal Method of Lines for the diffusion equation. Numer. Methods Partial Differ. Equ. 16(1), 30–41 (2000)
Sauter, S., Schwab, C.: Boundary Element Methods. Springer, Berlin (2011)
Schemann, M., Bornemann, F.: An adaptive Rothe method for the wave equation. Comput. Vis. Sci. 1(3), 137–144 (1998)
Schmitz, H., Grauer, R.: Darwin–Vlasov simulations of magnetised plasmas. J. Comput. Phys. 214(2), 738–756 (2006)
Sonnendrücker, E., Ambrosiano, J.J., Brandon, S.T.: A finite element formulation of the Darwin PIC model for use on unstructured grids. J. Comput. Phys. 121(2), 281–297 (1995)
Xiong, T., Jang, J., Li, F., Qiu, J.-M.: High order asymptotic preserving nodal discontinuous Galerkin IMEX schemes for the BGK equation. J. Comput. Phys. 284, 70–94 (2015)
Author information
Authors and Affiliations
Corresponding author
Additional information
Y. Cheng: Research is supported by NSF Grant DMS-1318186.
Rights and permissions
About this article
Cite this article
Cheng, Y., Christlieb, A.J., Guo, W. et al. An Asymptotic Preserving Maxwell Solver Resulting in the Darwin Limit of Electrodynamics. J Sci Comput 71, 959–993 (2017). https://doi.org/10.1007/s10915-016-0328-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-016-0328-0