Detecting Edges from Non-uniform Fourier Data Using Fourier Frames | Journal of Scientific Computing
Skip to main content

Detecting Edges from Non-uniform Fourier Data Using Fourier Frames

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Edge detection plays an important role in identifying regions of interest in an underlying signal or image. In some applications, such as magnetic resonance imaging (MRI) or synthetic aperture radar (SAR), data are sampled in the Fourier domain. Many algorithms have been developed to efficiently extract edges of images when uniform Fourier data are acquired. However, in cases where the data are sampled non-uniformly, such as in non-Cartesian MRI or SAR, standard inverse Fourier transformation techniques are no longer suitable. Methods exist for handling these types of sampling patterns, but are often ill-equipped for cases where data are highly non-uniform or when the data are corrupted or otherwise not usable in certain parts of the frequency domain. This investigation further develops an existing approach to discontinuity detection, and involves the use of concentration factors. Previous research shows that the concentration factor technique can successfully determine jump discontinuities in non-uniform data. However, as the distribution diverges further away from uniformity so does the efficacy of the identification. Thus we propose a method that employs the finite Fourier approximation to specifically tailor the design of concentration factors. We also adapt the algorithm to incorporate appropriate smoothness assumptions in the piecewise smooth regions of the function. Numerical results indicate that our new design method produces concentration factors which can more precisely identify jump locations than those previously developed in both one and two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. This idea was first investigated in [23].

  2. Recall that we assume that the discontinuities occur only on grid points \(x_j\). For convenience we choose \(x_j = \frac{j}{J}\), \(-J \le j \le J\) so that the value \(x = 0\) falls on the grid point \(x_0\). The system can be designed for any chosen gridpoints, however.

  3. The numerical results using Algorithm 1 were first reported in [23].

  4. Indeed, a related idea was examined in [30] for suppressing higher order terms in (36) given uniform samples, but in this case we design s(x) to more closely resemble the smooth part of the underlying function.

  5. Algorithm 4 closely follows the one provided in [28] for non-uniform coefficients, although the values obtained in (46) and (47) are substantially refined by Algorithms 1 and 2.

References

  1. Adcock, B., Gataric, M., Hansen, A.: On stable reconstructions from nonuniform Fourier measurements. SIAM J. Imaging Sci. 7(3), 1690–1723 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adcock, B., Gataric, M., Hansen, A.C. Stable nonuniform sampling with weighted Fourier frames and recovery in arbitrary spaces. In: 2015 International Conference on Sampling Theory and Applications (SampTA), pp. 105–109. IEEE (2015)

  3. Adcock, B., Gataric, M., Hansen, A.C.: Weighted frames of exponentials and stable recovery of multidimensional functions from nonuniform Fourier samples. Appl. Comput. Harmon. Anal. (2015). doi:10.1016/j.acha.2015.09.006

  4. Adcock, B., Gataric, M., Romero, J.L.: Computing reconstructions from nonuniform Fourier samples: universality of stability barriers and stable sampling rates. arXiv preprint arXiv:1606.07698 (2016)

  5. Aldroubi, A., Grochenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43(4), 585–620 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Archibald, R., Chen, K., Gelb, A., Renaut, R.: Improving tissue segmentation of human brain mri through preprocessing by the gegenbauer reconstruction method. NeuroImage 20(1), 489–502 (2003)

    Article  Google Scholar 

  7. Archibald, R., Gelb, A.: A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity. Med. Imaging IEEE Trans. 21(4), 305–319 (2002)

    Article  Google Scholar 

  8. Benedetto, J.: Irregular sampling and frames. In: Chui, C. (ed.) Wavelets: A Tutorial in Theory and Applications, pp. 445–507. Academic Press, Cambridge (1992)

    Chapter  Google Scholar 

  9. Canny, J.: A computational approach to edge detection. Pattern Anal. Mach. Intell. IEEE Trans. 6, 679–698 (1986)

    Article  Google Scholar 

  10. Chebira, A., Kovacevic, J.: Life beyond bases: the advent of frames (part I). IEEE Signal Process. Mag. 24(4), 86–104 (2007)

    Article  Google Scholar 

  11. Engelberg, S., Tadmor, E.: Recovery of edges from spectral data with noise: a new perspective. SIAM J. Numer. Anal. 46(5), 2620–2635 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fessler, J.A., Sutton, B.P.: Nonuniform fast Fourier transforms using min–max interpolation. IEEE Trans. Signal Process. 51(2), 560–574 (2003)

    Article  MathSciNet  Google Scholar 

  13. Gelb, A., Cates, D.: Segmentation of images from Fourier spectral data. Commun. Comput. Phys. 5(2–4), 326–349 (2009)

    MathSciNet  Google Scholar 

  14. Gelb, A., Hines, T.: Detection of edges from nonuniform Fourier data. J. Fourier Anal. Appl. 17(11), 1152–1179 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gelb, A., Song, G.: A frame theoretric approach to the non-uniform fast Fourier transform. SIAM J. Numer. Anal. 52(3), 1222–1242 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gelb, A., Tadmor, E.: Detection of edges in spectral data. Appl. Comput. Harmon. Anal. 7(1), 101–135 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gelb, A., Tadmor, E.: Detection of edges in spectral data. II. Nonlinear enhancement. SIAM J. Numer. Anal. 38(4), 1389–1408 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gelb, A., Tadmor, E.: Adaptive edge detectors for piecewise smooth data based on the minmod limiter. J. Sci. Comput. 28(2–3), 279–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Han, D., Kornelson, K., Larson, D., Weber, E.: Frames for Undergraduates. In: Student Mathematical Library 40. American Mathematical Society (2007)

  20. Jimenez, J., Medina, V., Yanez, O.: Data-driven brain MRI segmentation supported on edge confidence and a priori tissue information. IEEE Trans. Med. Imaging 25(1), 74–83 (2006)

    Article  Google Scholar 

  21. Kovacevic, J., Chebira, A.: Life beyond bases: the advent of frames (part II). IEEE Signal Process. Mag. 24, 115–125 (2007)

    Article  Google Scholar 

  22. Martinez, A., Gelb, A., Gutierrez, A.: Edge detection from non-uniform Fourier data using the convolutional gridding algorithm. J. Sci. Comput. 61(3), 490–512 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moore, R.: Designing concentration factors to detect edges from non-uniform Fourier data. Arizona State University Undergraduate Honors Thesis (2015)

  24. Petersen, A., Gelb, A., Eubank, R.: Hypothesis testing for Fourier based edge detection methods. J. Sci. Comput. 51, 608–630 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahya, R.M.: Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(5), 856–876 (2001)

    Article  Google Scholar 

  26. Song, G., Davis, J., Gelb, A.: A high-dimensional inverse frame operator approximation technique. SIAM J. Numer. Anal. 54(4), 2282–2301 (2016). doi:10.1137/15M1047593

  27. Song, G., Gelb, A.: Approximating the inverse frame operator from localized frames. Appl. Comput. Harmon. Anal. 35(1), 94–110 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stefan, W., Viswanathan, A., Gelb, A., Renaut, R.: Sparsity enforcing edge detection method for blurred and noisy Fourier data. J. Sci. Comput. 50(3), 536–556 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun, W., Zhou, X.: On the stability of multivariate trigonometric systems. J. Math. Anal. Appl. 235(1), 159–167 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Viswanathan, A., Gelb, A., Cochran, D.: Iterative design of concentration factors for jump dection. J. Sci. Comput. 51, 631–649 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Viswanathan, A., Gelb, A., Cochran, D., Renaut, R.: On reconstruction from non-uniform spectral data. J. Sci. Comput. 45, 487–513 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by Grants NSF-DMS 1216559 (AG), NSF-DMS 1521600 (AG), NSF-DMS 1521661 (GS), NSF 1502640 (AG), and AFOSR FA9550-15-1-0152 (AG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Gelb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelb, A., Song, G. Detecting Edges from Non-uniform Fourier Data Using Fourier Frames. J Sci Comput 71, 737–758 (2017). https://doi.org/10.1007/s10915-016-0320-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0320-8

Keywords