Vertex-Centered Linearity-Preserving Schemes for Nonlinear Parabolic Problems on Polygonal Grids | Journal of Scientific Computing
Skip to main content

Vertex-Centered Linearity-Preserving Schemes for Nonlinear Parabolic Problems on Polygonal Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

On arbitrary polygonal grids, a family of vertex-centered finite volume schemes are suggested for the numerical solution of the strongly nonlinear parabolic equations arising in radiation hydrodynamics and magnetohydrodynamics. We define the primary unknowns at the cell vertices and derive the schemes along the linearity-preserving approach. Since we adopt the same cell-centered diffusion coefficients as those in most existing finite volume schemes, it is required to introduce some auxiliary unknowns at the cell centers in the case of nonlinear diffusion coefficients. A second-order positivity-preserving algorithm is then suggested to interpolate these auxiliary unknowns via the primary ones. All the schemes lead to symmetric and positive definite linear systems and their stability can be rigorously analyzed under some standard and weak geometry assumptions. More interesting is that these vertex-centered schemes do not have the so-called numerical heat-barrier issue suffered by many existing cell-centered or hybrid schemes (Lipnikov et al. in J Comput Phys 305:111–126, 2016). Numerical experiments are also presented to show the efficiency and robustness of the schemes in simulating nonlinear parabolic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aavatsmark, I., Barkve, T., Bøe, Ø., Mannseth, T.: Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: derivation of the methods. SIAM J. Sci. Comput. 19, 1700–1716 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basko, M.M., Maruhn, J., Tauschwitz, A.: An efficient cell-centered diffusion scheme for quadrilateral grids. J. Comput. Phys. 228, 2175–2193 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beirao da Veiga, L., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method for Elliptic PDEs. Springer, New York (2014)

    MATH  Google Scholar 

  5. Breil, J., Maire, P.H.: A cell-centered diffusion scheme on two-dimensional unstructured meshes. J. Comput. Phys. 224, 785–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi, F., Lipnikov, K., Simoncini, V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15, 1533–1551 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Camier, J.S., Hermeline, F.: A monotone non-linear finite volume method for approximating diffusion operators on general meshes. Int. J. Numer. Meth. Eng. 107, 496–519 (2016)

    Article  MATH  Google Scholar 

  9. Coudière, Y., Vila, J.-P., Villedieu, P.: Convergence rate of a finite volume scheme for a two-dimensional diffusion convection problem. Math. Model. Numer. Anal. 33, 493–516 (1999)

    Article  MATH  Google Scholar 

  10. Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24, 1575–1619 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30, 1009–1043 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eymard, R., Henry, G., Herbin, R., Hubert, F., Klöfkorn, R., Manzini, G.: 3D benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Fort, J., Furst, J., Halama, J., Herbin, R., Hubert, F. (eds.) Finite Volumes for Complex Applications VI, pp. 895–930. Springer, New York (2008)

    Google Scholar 

  13. Feng, X., Li, R., He, Y., Liu, D.: P1-nonconforming quadrilateral finite volume methods for the semilinear elliptic equations. J. Sci. Comput. 52, 519–545 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, Z., Wu, J.: A linearity-preserving cell-centered scheme for the heterogeneous and anisotropic diffusion equations on general meshes. Int. J. Numer. Methods Fluids 67, 2157–2183 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, Z., Wu, J.: A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitrary 2D and 3D meshes. J. Comput. Phys. 250, 308–331 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, Z., Wu, J.: A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes. SIAM J. Sci. Comput. 37, A420–A438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, S., Zhang, M., Zhou, H., Zhang, S.: Improved numerical method for three dimensional diffusion equation with strongly discontinuous coefficients. High Power Laser Part. Beams 27, 092014-1–092014-6 (2015)

    Google Scholar 

  18. Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Eymard, R., Herard, J.-M. (eds.) Finite Volumes for Complex Applications V, pp. 659–692. Wiley, London (2008)

    Google Scholar 

  19. Hermeline, F.: Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng. 192, 1939–1959 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, W., Kappen, A.M.: A study of cell-center finite volume methods for diffusion equations. Mathematics Research Report 98-10-01, Department of Mathematics, University of Kansas, Laurence KS (1998)

  21. Huang, Z., Li, Y.: Monotone finite point method for non-equilibrium radiation diffusion equations. BIT Numer. Math. 56, 659–679 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Irons, B. M., Razzaque, A.: Experience with the patch test for convergence of finite elements. In: Proceedings of Symposia on Mathematical Foundations of the Finite Element Method with Application to Partial Differential Operators, pp. 557–587. Academic Press, New York (1972)

  23. Kannan, R., Springel, V., Pakmor, R., Marinacci, F., Vogelsberger, M.: Accurately simulating anisotropic thermal conduction on a moving mesh. Mon. Not. R. Astron. Soc. 458, 410–424 (2016)

    Article  Google Scholar 

  24. Li, R., Chen, Z., Wu, W.: Generalized Difference Methods for Differential Equations. Marcel Dekker, New York (2000)

    Google Scholar 

  25. Lipnikov, K., Manzini, G., Moulton, J.D., Shashkov, M.: The mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient. J. Comput. Phys. 305, 111–126 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu, C., Huang, W., Van Vleck, E.S.: The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and Lubrication-type equations. J. Comput. Phys. 242, 24–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lv, J., Li, Y.: Optimal biquadratic finite volume element methods on quadrilateral meshes. SIAM J. Numer. Anal. 50, 2379–2399 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Morel, J., Roberts, R., Shashkov, M.: A local support-operators diffusion discretization scheme for quadrilateral \(r-z\) meshes. J. Comput. Phys. 144, 17–51 (1998)

    Article  MathSciNet  Google Scholar 

  29. Sheng, Z., Yue, J., Yuan, G.: Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes. SIAM J. Sci. Comput. 31, 2915–2934 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shestakov, A.I., Prasad, M.K., Milovich, J.L., Gentile, N.A., Painter, J.F., Furnish, G.: The radiation-hydrodynamic ICF3D code. Comput. Methods Appl. Mech. Eng. 187, 181–200 (2000)

    Article  MATH  Google Scholar 

  31. Sijoy, C.D., Chaturvedi, S.: TRHD: Three-temperature radiation-hydrodynamics code with an implicit non-equilibrium radiation transport using a cell-centered monotonic finite volume scheme on unstructured-grids. Comput. Phys. Commun. 190, 98–119 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, W., Wu, J., Zhang, X.: A family of linearity-preserving schemes for anisotropic diffusion problems on arbitrary polyhedral grids. Comput. Methods Appl. Mech. Eng. 267, 418–433 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, J., Dai, Z., Gao, Z., Yuan, G.: Linearity preserving nine-point schemes for diffusion equation on distorted quadrilateral meshes. J. Comput. Phys. 229, 3382–3401 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, J., Gao, Z., Dai, Z.: A vertex-centered linearity-preserving discretization of diffusion problems on polygonal meshes. Int. J. Numer. Methods Fluids 81, 131–150 (2016)

    Article  MathSciNet  Google Scholar 

  35. Yang, X., Huang, W., Qiu, J.: A moving mesh finite difference method for equilibrium radiation diffusion equations. J. Comput. Phys. 298, 661–677 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yin, L., Wu, J., Dai, Z.: A Lions domain decomposition algorithm for radiation diffusion equations on non-matching grids. Numer. Math. Theory Methods Appl. 8, 530–548 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yin, L., Wu, J., Gao, Z.: The cell functional minimization scheme for the anisotropic diffusion problems on arbitrary polygonal grids. ESAIM: M2AN 49, 193–220 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yin, L., Wu, J., Yao, Y.: A cell functional minimization scheme for domain decomposition method on non-orthogonal and non-matching meshes. Numer. Math. 128, 773–804 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yin, L., Wu, J., Yao, Y.: A cell functional minimization scheme for parabolic problem. J. Comput. Phys. 229, 8935–8951 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zel’dovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol. II. Academic Press, New York (1967)

    Google Scholar 

  41. Zhang, Z., Zou, Q.: Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems. Numer. Math. 130, 363–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhou, Y.: Applications of Discrete Functional Analysis to the Finite Difference Methods. International Academic Publisher, Beijing (1990)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (Nos. 11271053, 91330205, 11135007) and the Defense Industrial Technology Development Program (No. B1520133015). The author thanks the anonymous reviewers for their carefully readings and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiming Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J. Vertex-Centered Linearity-Preserving Schemes for Nonlinear Parabolic Problems on Polygonal Grids. J Sci Comput 71, 499–524 (2017). https://doi.org/10.1007/s10915-016-0309-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0309-3

Keywords