A Collocation Boundary Value Method for Linear Volterra Integral Equations | Journal of Scientific Computing
Skip to main content

A Collocation Boundary Value Method for Linear Volterra Integral Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is devoted to studying the boundary value method for Volterra integral equations. High order numerical schemes are devised by using special multistep collocation methods, which depend on numerical approximations of the solution in the next several steps. Stability analysis illustrates these methods enjoy wide absolutely stable regions. With the help of efficient evaluation for highly oscillatory integrals, these methods are applied to solving Volterra integral equations with highly oscillatory kernels. Both theoretical and numerical results show they share the property that the higher the oscillation, the better the accuracy of the approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In the remaining part, we will abbreviate \(F_n(t_{n,i})\) to [Lag Term] for simplicity.

  2. To make use of the same collocation grid as CBVM, the stepsize of CCM is chosen to be 2h.

References

  1. Amodio, P., Mazzia, F., Trigiante, D.: Stability of some boundary value methods for the solution of initial value problems. BIT Numer. Math. 33, 434–451 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amodio, P., Mazzia, F.: Boundary value methods based on Adams-type methods. Appl. Numer. Math. 18, 23–35 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Axelsson, A.O.H., Verwer, J.G.: Boundary value techniques for initial value problems in ordinary differential equations. Math. Comput. 45, 153–171 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brugnano, L., Trigiante, D.: Convergence and stability of boundary value methods for ordinary differential equations. J. Comput. Appl. Math. 66, 97–109 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brugnano, L., Trigiante, D.: Boundary value methods: the third way between linear multistep and Runge–Kutta methods. Comput. Math. Appl. 36, 269–284 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach Science Publishers, Amsterdam (1998)

    MATH  Google Scholar 

  7. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  8. Brunner, H.: On Volterra integral operators with highly oscillatory kernels. Discret. Contin. Dyn. Syst. 34, 915–929 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cash, J.R.: Stable Recursions. Acadamic Press, New York (1976)

    Google Scholar 

  10. Conte, D., Paternoster, B.: Multistep collocation methods for Volterra integral equations. Appl. Numer. Math. 59, 1721–1736 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, H., Zhang, C.: Boundary value methods for Volterra integral and integro-differential equations. Appl. Math. Comput. 218, 2619–2630 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Chen, H., Zhang, C.: Block boundary value methods for Volterra integral and integro-differential equations. J. Comput. Appl. Math. 236, 2822–2837 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davis, P.J.: Interpolation and Approximation. Dover Publications, New York (1975)

    MATH  Google Scholar 

  14. Fazeli, S., Hojjati, G., Shahmorad, S.: Super implicit multistep collocation methods for nonlinear Volterra integral equations. Math. Comput. Model. 55, 590–607 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fazeli, S., Hojjati, G., Shahmorad, S.: Multistep Hermite collocation methods for solving Volterra integral equations. Numer. Algorithm 60, 27–50 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fox, L., Mitchell, A.R.: Boundary-value techniques for the numerical solution of initial-value problems in ordinary differential equations. Q. J. Mech. Appl. Math. 10, 232–243 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iserles, A.: On the numerical quadrature of highly oscillatory integrals I: Fourier transforms. IMA J. Numer. Anal. 24, 365–391 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, Chichester (1991)

    MATH  Google Scholar 

  19. Lopez, L., Trigiante, D.: Boundary value methods and BV-stability in the solution of initial value problems. Appl. Numer. Math. 11, 225–239 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma, J., Xiang, S., Kang, H.: On the convergence rates of Filon methods for the solution of a Volterra integral equation with a highly oscillatory Bessel kernel. Appl. Math. Lett. 26, 699–705 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, J., Fang, C., Xiang, S.: Modified asymptotic orders of the direct Filon method for a class of Volterra integral equations. J. Comput. Appl. Math. 281, 120–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marzulli, P., Trigiante, D.: Stability and convergence of boundary value methods for solving ODE. J. Differ. Equ. Appl. 1, 45–55 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miller, J.C.P.: Bessel Functions, Part II, Mathematical Table X. Cambridge University Press, Cambridge (1952)

    Google Scholar 

  24. Olver, F.W.J.: Numerical solution of second-order linear difference equations. J. Res. Natl. Bur. Stand. 71B, 111–129 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  25. Olver, F.W.J., Sooke, D.J.: Note on backward recurrence algorithms. Math. Comput. 26, 941–947 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50, 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xiang, S.: Efficient Filon-type methods for \(\int _a^b f(x)e^{i\omega g(x)}dx\). Numer. Math. 105, 633–658 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiang, S., Wu, Q.: Numerical solutions to Volterra integral equations of the second kind with oscillatory trigonometric kernels. Appl. Math. Comput. 223, 34–44 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Xiang, S.: Laplace transforms for approximation of highly oscillatory Volterra integral equations of the first kind. Appl. Math. Comput. 232, 944–954 (2014)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Ma.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

This work is supported by No.11371376 of NSF of China, the Innovation-Driven Project and the Mathematics and Interdisciplinary Sciences Project of Central South University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Xiang, S. A Collocation Boundary Value Method for Linear Volterra Integral Equations. J Sci Comput 71, 1–20 (2017). https://doi.org/10.1007/s10915-016-0289-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0289-3

Keywords