Decoupled, Unconditionally Stable, Higher Order Discretizations for MHD Flow Simulation | Journal of Scientific Computing Skip to main content
Log in

Decoupled, Unconditionally Stable, Higher Order Discretizations for MHD Flow Simulation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose, analyze, and test a new MHD discretization which decouples the system into two Oseen problems at each timestep yet maintains unconditional stability with respect to the time step size, is optimally accurate in space, and behaves like second order in time in practice. The proposed method chooses a parameter \(\theta \in [0,1]\), dependent on the viscosity \(\nu \) and magnetic diffusivity \(\nu _m\), so that the explicit treatment of certain viscous terms does not cause instabilities, and gives temporal accuracy \(O(\Delta t^2 + (1-\theta )|\nu -\nu _m|\Delta t)\). In practice, \(\nu \) and \(\nu _m\) are small, and so the method behaves like second order. When \(\theta =1\), the method reduces to a linearized BDF2 method, but it has been proven by Li and Trenchea that such a method is stable only in the uncommon case of \(\frac{1}{2}< \frac{\nu }{\nu _m} < 2\). For the proposed method, stability and convergence are rigorously proven for appropriately chosen \(\theta \), and several numerical tests are provided that confirm the theory and show the method provides excellent accuracy in cases where usual BDF2 is unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akbas, M., Rebholz, L., Tone, F.: A note on the importance of mass conservation in long-time stability of Navier–Stokes equations. Appl. Math. Lett. 45, 98–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D., Qin, J.: Quadratic velocity/linear pressure Stokes elements. In: Vichnevetsky, R., Knight, D., Richter, G. (eds.) Advances in Computer Methods for Partial Differential Equations, VII edn, pp. 28–34. IMACS, NewYork (1992)

    Google Scholar 

  3. Barleon, L., Casal, V., Lenhart, L.: MHD flow in liquid-metal-cooled blankets. Fusion Eng. Des. 14, 401–412 (1991)

    Article  Google Scholar 

  4. Barrow, J.D., Maartens, R., Tsagas, C.G.: Cosmology with inhomogeneous magnetic fields. Phys. Rep. 449, 131–171 (2007)

    Article  MathSciNet  Google Scholar 

  5. Benzi, M., Olshanksii, M.A.: An augmented Lagrangian-based approach to the Oseen problem. SIAM J. Sci. Comput. 28(6), 2095–2113 (2005)

    Article  MathSciNet  Google Scholar 

  6. Biskamp, D.: Magnetohydrodynamic Turbulence. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  7. Bodenheimer, P., Laughlin, G.P., Rozyczka, M., Yorke, H.W.: Numerical Methods in Astrophysics. Taylor & Francis, New York (2007). Series in Astronomy and Astrophysics

    MATH  Google Scholar 

  8. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, New York (1994). Texts in Applied Mathematics

    MATH  Google Scholar 

  9. Cho, J., Vishniac, E.T.: The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys. J. 539, 273–282 (2000)

    Article  Google Scholar 

  10. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  11. Dormy, E., Soward, A.M.: Mathematical aspects of natural dynamos. Grenoble Sciences. Universite Joseph Fourier, Grenoble, VI, Fluid Mechanics of Astrophysics and Geophysics (2007)

  12. Elman, H.C., Silvester, D.J., Wathen, A.J.: Performance and analysis of saddle point preconditioners for the discrete steady-state Navier–Stokes equations. Numer. Math. 90, 665–688 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elsässer, W.M.: The hydromagnetic equations. Phys. Rev. 79, 183 (1950)

    Article  MATH  Google Scholar 

  14. Font, J.A.: Gerneral Relativistic Hydrodynamics and Magnetohydrodynamics: Hyperbolic System in Relativistic Astrophysics, in Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  15. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Mathematics, 749th edn. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  16. Gunzburger, M.: Iterative penalty methods for the Stokes and Navier–Stokes equations. In: Proceedings from Finite Element Analysis in Fluids conference, University of Alabama, Huntsville, pp. 1040–1045 (1989)

  17. Gunzburger, M.D.: Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms. Academic Press, Boston (1989)

    Google Scholar 

  18. Hashizume, H.: Numerical and experimental research to solve MHD problem in liquid blanket system. Fusion Eng. Des. 81, 1431–1438 (2006)

    Article  Google Scholar 

  19. Hecht, F.: New development in Freefem++. J. Numer. Math. 20, 251–266 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hillebrandt, W., Kupka, F.: Interdisciplinary Aspects of Turbulence. Lecture Notes in Physics, 756th edn. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  22. Jones, C.A.: Thermal and compositional convection in the outer core. Treatise Geophys. 8, 131–185 (2007)

    Article  Google Scholar 

  23. Konshin, I.N., Olshanskii, M.A., Vassilevski, YuV: ILU preconditioners for non-symmetric saddle point matrices with application to the incompressible Navier–Stokes equations. SIAM J. Sci. Comp. 37, 2171–2197 (2015)

    Article  MATH  Google Scholar 

  24. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford (1960)

    MATH  Google Scholar 

  25. Li, Y., Trenchea, C.: Partitioned second order method for magnetohydrodynamics in Elsasser fields. Submitted (2015)

  26. Akbas, M., Kaya, S., Mohebujjaman, M., Rebholz, L.: Numerical analysis and testing of a fully discrete, decoupled penalty-projection algorithm for MHD in Elsässer variable. Int. J. Numer. Anal. Model. 13(1), 90–113 (2016)

  27. Olson, P.: Experimental dynamos and the dynamics of planetary cores. Ann. Rev. Earth Planet. Sci. 41, 153–181 (2013)

    Article  Google Scholar 

  28. Punsly, B.: Black Hole Gravitohydrodynamics. Astrophysics and Space Science Library, vol. 355, 2nd edn. Springer, Berlin (2008)

    Google Scholar 

  29. Qin, J., Zhang, S.: Stability and approximability of the P1–P0 element for Stokes equation. Int. J. Numer. Methods Fluids 54(5), 497–515 (2007)

    Article  Google Scholar 

  30. Rebholz, L., Xiao, M.: On reducing the splitting error in Yosida methods for the Navier–Stokes equations with grad-div stabilization. Comput. Methods Appl. Mech. Eng. 294, 259–277 (2015)

    Article  MathSciNet  Google Scholar 

  31. Smolentsev, S., Moreau, R., Buhler, L., Mistrangelo, C.: MHD thermofluid issues of liquid-metal blankets: phenomena and advances. Fusion Eng. Des. 85, 1196–1205 (2010)

    Article  Google Scholar 

  32. Trenchea, C.: Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows. Appl. Math. Lett. 27, 97–100 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wacker, B., Arndt, D., Lube, G.: Nodal-based finite element methods with local projection stabilization for linearized incompressible magnetohydrodynamics. Submitted (2015)

  34. Zhang, S.: A new family of stable mixed finite elements for the 3d Stokes equations. Math. Comput. 74, 543–554 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, S.: Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids. Calcolo 48(3), 211–244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

All authors were partially supported by NSF grant DMS1522191. T. Heister was partially supported by the Computational Infrastructure in Geodynamics initiative (CIG), through the National Science Foundation under Award No. EAR-0949446 and The University of California–Davis. Clemson University is acknowledged for generous allotment of compute time on the Palmetto cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo G. Rebholz.

Appendix

Appendix

We prove here a conditional stability result for the full second order method, i.e. when \(\theta =1\), which does not assume \(\frac{1}{2}<Pr_m<2\). The condition is that \(\Delta t \le \frac{h^2(\nu +\nu _m-|\nu -\nu _m|)}{C_i(\nu -\nu _m)^2}\), where \(C_i\) an the inverse inequality constant, and thus if \(\nu -\nu _m\) is not small (which is equivalent to \(Pr_m\) near 1), this can be a severe timestep restriction when fine meshes are used.

Lemma 6.1

Consider Algorithm 3.1 with \(\theta =1\) (the full second order method). If the mesh is sufficiently regular so that the inverse inequality holds (with constant \(C_i\)) and the time step is chosen to satisfy

$$\begin{aligned} \Delta t \le \frac{h^2(\nu +\nu _m-|\nu -\nu _m|)}{C_i(\nu -\nu _m)^2}, \end{aligned}$$

then the method is stable and solutions satisfy

$$\begin{aligned}&\Vert v_h^M\Vert ^2+\Vert w_h^M\Vert ^2+\frac{(\nu +\nu _m-|\nu -\nu _m|)\Delta t}{2}\sum _{n=1}^{M-1}\left( \Vert \nabla v_h^{n+1}\Vert ^2+\Vert \nabla w_h^{n+1}\Vert ^2\right) \\&\quad \,\le C(\nu ,\nu _m,v_h^0, v_h^1, w_h^0, w_h^1, f_1, f_2). \end{aligned}$$

Proof

Choose \(\theta =1,\chi _h=v_h^{n+1}\in V_h\) and \(l_h=w_h^{n+1}\in V_h\) in Algorithm 3.1, (3.1)–(3.2). This vanishes the nonlinear and pressure terms, and leaves

$$\begin{aligned}&\frac{1}{{2\Delta }t}\left( 3v_h^{n+1}-4v_h^n+v_h^{n-1},v_h^{n+1}\right) +\frac{\nu +\nu _m}{2}\Vert {\nabla }v_h^{n+1}\Vert ^2+\frac{\nu -\nu _m}{2}\nonumber \\&\quad \times ({\nabla }(2w_h^n-w_h^{n-1}),{\nabla }_+z_h^{n+1}) =(f_1^{n+1},v_h^{n+1}), \end{aligned}$$
(6.1)
$$\begin{aligned}&\frac{1}{{2\Delta }t}(3w_h^{n+1}-4w_h^n+w_h^{n-1},w_h^{n+1}) +\frac{\nu +\nu _m}{2}\Vert {\nabla }w_h^{n+1}\Vert ^2+\frac{\nu -\nu _m}{2} \nonumber \\&\quad \times \left( {\nabla }(2v_h^n-v_h^{n-1}\right) ,{\nabla }w_h^{n+1}) =(f_2^{n+1},w_h^{n+1}). \end{aligned}$$
(6.2)

Using the usual BDF2 identity on the time derivative terms and adding the equations yields

$$\begin{aligned}&\frac{1}{4\Delta t}\big (\Vert v_h^{n+1}\Vert ^2-\Vert v_h^n\Vert ^2+\Vert 2v_h^{n+1} -v_h^n\Vert ^2\nonumber \\&\quad -\,\Vert 2v_h^n-v_h^{n-1}\Vert ^2+\Vert w_h^{n+1}\Vert ^2- \Vert w_h^n\Vert ^2+\Vert 2w_h^{n+1}-w_h^n\Vert ^2\nonumber \\&\quad -\,\Vert 2w_h^n-w_h^{n-1}\Vert ^2+\Vert v_h^{n+1}-2v_h^n+v_h^{n-1}\Vert ^2+\Vert w_h^{n+1} -2w_h^n+w_h^{n-1}\Vert ^2\big )\nonumber \\&\quad +\,\frac{\nu +\nu _m}{2} \big (\Vert {\nabla }v_h^{n+1}\Vert ^2+\Vert {\nabla }w_h^{n+1}\Vert ^2\big )\nonumber \\&\quad +\,\frac{\nu -\nu _m}{2}({\nabla }(2w_h^n-w_h^{n-1}),{\nabla }v_h^{n+1})\nonumber \\&\quad +\,\frac{\nu -\nu _m}{2}({\nabla }(2v_h^n-v_h^{n-1}),{\nabla }w_h^{n+1}) =(f_1^{n+1},v_h^{n+1})+(f_2^{n+1},w_h^{n+1}), \end{aligned}$$
(6.3)

and then adding and subtracting the term \(\frac{\nu -\nu _m}{2}\left( \nabla v_h^{n+1},\nabla w_h^{n+1}\right) \) provides

$$\begin{aligned}&\frac{1}{4\Delta t}\big (\Vert v_h^{n+1}\Vert ^2-\Vert v_h^n\Vert ^2+\Vert 2v_h^{n+1}-v_h^n\Vert ^2-\Vert 2v_h^n-v_h^{n-1}\Vert ^2\nonumber \\&\quad +\,\Vert w_h^{n+1}\Vert ^2-\Vert w_h^n\Vert ^2+\Vert 2w_h^{n+1}-w_h^n\Vert ^2\nonumber \\&\quad -\,\Vert 2w_h^n-w_h^{n-1}\Vert ^2+\Vert v_h^{n+1}-2v_h^n+v_h^{n-1}\Vert ^2+\Vert w_h^{n+1}-2w_h^n\nonumber \\&\quad +\,w_h^{n-1}\Vert ^2\big )+\frac{\nu +\nu _m}{2}\big (\Vert {\nabla }v_h^{n+1}\Vert ^2+\Vert {\nabla }w_h^{n+1}\Vert ^2\big )\nonumber \\&\quad -\,\frac{\nu -\nu _m}{2}({\nabla }(v_h^{n+1}-2v_h^n+v_h^{n-1}),{\nabla }w_h^{n+1})\nonumber \\&\quad -\,\frac{\nu -\nu _m}{2}({\nabla }(w_h^{n+1}-2w_h^n+w_h^{n-1}),{\nabla }v_h^{n+1})\nonumber \\&\quad +\,\frac{\nu -\nu _m}{2}(\nabla w_h^{n+1},\nabla v_h^{n+1})+\frac{\nu -\nu _m}{2}(\nabla v_h^{n+1},\nabla w_h^{n+1})\nonumber \\&\quad =\,(f_1^{n+1},v_h^{n+1})+(f_2^{n+1},w_h^{n+1}). \end{aligned}$$
(6.4)

Using Cauchy–Schwarz and Young’s inequalities we have that

$$\begin{aligned}&\frac{1}{4\Delta t}\big (\Vert v_h^{n+1}\Vert ^2-\Vert v_h^n\Vert ^2+\Vert 2v_h^{n+1}-v_h^n\Vert ^2-\Vert 2v_h^n-v_h^{n-1}\Vert ^2\nonumber \\&\quad +\Vert w_h^{n+1}\Vert ^2-\Vert w_h^n\Vert ^2+\Vert 2w_h^{n+1}-w_h^n\Vert ^2\nonumber \\&\quad -\,\Vert 2w_h^n-w_h^{n-1}\Vert ^2+\Vert v_h^{n+1}-2v_h^n+v_h^{n-1}\Vert ^2+\Vert w_h^{n+1}\nonumber \\&\quad -2w_h^n+w_h^{n-1}\Vert ^2\big )+\frac{\nu +\nu _m}{2}\big (\Vert {\nabla }v_h^{n+1}\Vert ^2+\Vert {\nabla }w_h^{n+1}\Vert ^2\big )\nonumber \\&\quad \le \,\frac{|\nu -\nu _m|}{2}\Vert {\nabla }\big (w_h^{n+1}-2w_h^n+\,w_h^{n-1}\big )\Vert \Vert {\nabla }v_h^{n+1}\Vert \nonumber \\&\quad +\frac{|\nu -\nu _m|}{2}|\Vert \nabla (v_h^{n+1}-2v_h^n+v_h^{n-1})\Vert \Vert {\nabla }w_h^{n+1}\Vert \nonumber \\&\quad +\,|\nu -\nu _m|\Vert {\nabla }w_h^{n+1}\Vert \Vert {\nabla }v_h^{n+1}\Vert +\Vert f_1^{n+1}\Vert _{-1}\Vert {\nabla }v_h^{n+1}\Vert \nonumber \\&\quad +\,\Vert f_2^{n+1}\Vert _{-1}\Vert {\nabla }w_h^{n+1}\Vert . \end{aligned}$$
(6.5)

Young’s inequality provides the following bounds on the last five terms in (6.5):

$$\begin{aligned}&|\nu -\nu _m|\Vert {\nabla }v_h^{n+1}\Vert \Vert {\nabla }w_h^{n+1}\Vert \le \frac{|\nu -\nu _m|}{2}\Vert {\nabla }\\&\quad v_h^{n+1}\Vert ^2+\frac{|\nu -\nu _m|}{2}\Vert {\nabla }w_h^{n+1}\Vert ^2,\\&\Vert f_1^{n+1}\Vert _{-1}\Vert \nabla v_h^{n+1}\Vert \le \frac{\nu +\nu _m-|\nu -\nu _m|}{8}\Vert {\nabla } v_h^{n+1}\Vert ^2\\&\quad +\,\frac{2}{\nu +\nu _m-|\nu -\nu _m|}\Vert f_1^{n+1}\Vert _{-1}^2,\\&\Vert f_2^{n+1}\Vert _{-1}\Vert {\nabla }w_h^{n+1}\Vert \le \frac{\nu +\nu _m-|\nu -\nu _m|}{8}\Vert {\nabla }w_h^{n+1}\Vert ^2\\&\quad +\,\frac{2}{\nu +\nu _m-|\nu -\nu _m|}\Vert f_2^{n+1}\Vert _{-1}^2,\\&\frac{|\nu -\nu _m|}{2}|\Vert {\nabla }(w_h^{n+1}-2w_h^n+w_h^{n-1})\Vert \Vert {\nabla }v_h^{n+1}\Vert \le \frac{\nu +\nu _m-|\nu -\nu _m|}{4}\Vert {\nabla }v_h^{n+1}\Vert ^2\\&\quad +\,\frac{(\nu -\nu _m)^2}{4(\nu +\nu _m-|\nu -\nu _m|)}\Vert \nabla (w_h^{n+1}-2w_h^n+w_h^{n-1})\Vert ^2,\\&\frac{|\nu -\nu _m|}{2}|\Vert \nabla (v_h^{n+1}-2v_h^n+v_h^{n-1})\Vert \Vert {\nabla }w_h^{n+1}\Vert \le \frac{\nu +\nu _m-|\nu -\nu _m|}{4}\Vert {\nabla }w_h^{n+1}\Vert ^2\\&\quad +\,\frac{(\nu -\nu _m)^2}{4(\nu +\nu _m-|\nu -\nu _m|)}\Vert \nabla (v_h^{n+1}-2v_h^n+v_h^{n-1})\Vert ^2. \end{aligned}$$

Combining, we now have that

$$\begin{aligned}&\frac{1}{4\Delta t}\big (\Vert v_h^{n+1}\Vert ^2-\Vert v_h^n\Vert ^2+\Vert 2v_h^{n+1}-v_h^n\Vert ^2\nonumber \\&\quad -\,\Vert 2v_h^n-v_h^{n-1}\Vert ^2+\Vert w_h^{n+1}\Vert ^2-\Vert w_h^n\Vert ^2+\Vert 2w_h^{n+1}-w_h^n\Vert ^2\nonumber \\&\quad -\,\Vert 2w_h^n-w_h^{n-1}\Vert ^2+\Vert v_h^{n+1}-2v_h^n+v_h^{n-1}\Vert ^2+\Vert w_h^{n+1}\nonumber \\&\quad -\,2w_h^n+w_h^{n-1}\Vert ^2\big )+\frac{\nu +\nu _m-|\nu -\nu _m|}{8}\big (\Vert {\nabla }v_h^{n+1}\Vert ^2\nonumber \\&\quad +\,\Vert {\nabla }w_h^{n+1}\Vert ^2\big )\le \frac{(\nu -\nu _m)^2}{4(\nu +\nu _m-|\nu -\nu _m|)}\big (\Vert \nabla (v_h^{n+1}-2v_h^n+v_h^{n-1})\Vert ^2\nonumber \\&\quad +\,\Vert \nabla (w_h^{n+1}-2w_h^n+w_h^{n-1})\Vert ^2\big )\nonumber \\&\quad +\,\frac{2}{\nu +\nu _m-|\nu -\nu _m|}\big (\Vert f_1^{n+1}\Vert _{-1}^2+\Vert f_2^{n+1}\Vert _{-1}^2\big ). \end{aligned}$$
(6.6)

The inverse inequality provides the estimate

$$\begin{aligned}\Vert \nabla (z_h^{n+1}-2z_h^n+z_h^{n-1})\Vert ^2\le C_ih^{-2}\Vert z_h^{n+1}-2z_h^n+z_h^{n-1}\Vert ^2,\end{aligned}$$

which allows Eq. (6.6) to be written as

$$\begin{aligned}&\frac{1}{4\Delta t}\big (\Vert v_h^{n+1}\Vert ^2-\Vert v_h^n\Vert ^2+\Vert 2v_h^{n+1}-v_h^n\Vert ^2-\Vert 2v_h^n\nonumber \\&\quad -\,v_h^{n-1}\Vert ^2+\Vert w_h^{n+1}\Vert ^2-\Vert w_h^n\Vert ^2+\Vert 2w_h^{n+1}-w_h^n\Vert ^2 -\Vert 2w_h^n-w_h^{n-1}\Vert ^2\big )\nonumber \\&\quad +\left[ \frac{1}{4{\Delta }t}-\,\frac{(\nu -\nu _m)^2C_ih^{-2}}{4(\nu +\nu _m-|\nu -\nu _m|)}\right] \Vert w_h^{n+1}-2w_h^n+w_h^{n-1}\Vert ^2\nonumber \\&\quad +\left[ \frac{1}{4{\Delta }t}-\frac{(\nu -\nu _m)^2C_ih^{-2}}{4(\nu +\nu _m-|\nu -\nu _m|)}\right] \Vert v_h^{n+1}-2v_h^n+v_h^{n-1}\Vert ^2\nonumber \\&\quad +\,\frac{\nu +\nu _m-|\nu -\nu _m|}{8}\big (\Vert {\nabla }v_h^{n+1}\Vert ^2+\Vert {\nabla }w_h^{n+1}\Vert ^2\big )\nonumber \\&\quad \le \,\frac{2}{\nu +\nu _m-|\nu -\nu _m|}\left( \Vert f_1^{n+1}\Vert _{-1}^2+\Vert f_2^{n+1}\Vert _{-1}^2\right) . \end{aligned}$$
(6.7)

Now using the assumption on the time step size and applying standard techniques completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heister, T., Mohebujjaman, M. & Rebholz, L.G. Decoupled, Unconditionally Stable, Higher Order Discretizations for MHD Flow Simulation. J Sci Comput 71, 21–43 (2017). https://doi.org/10.1007/s10915-016-0288-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0288-4

Keywords

Navigation