Abstract
Optimal control problems governed by a fractional diffusion equation tends to provide a better description than one by a classical second-order Fickian diffusion equation in the context of transport or conduction processes in heterogeneous media. However, the fractional control problem introduces significantly increased computational complexity and storage requirement than the corresponding classical control problem, due to the nonlocal nature of fractional differential operators. We develop a fast gradient projection method for a pointwise constrained optimal control problem governed by a time-dependent space-fractional diffusion equation, which requires the computational cost from \(O(M N^3)\) of a conventional solver to \(O(M N\log N)\) and memory requirement from \(O(N^2)\) to O(N) for a problem of size N and of M time steps. Numerical experiments show the utility of the method.
Similar content being viewed by others
References
Agrawal, O.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)
Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J.M., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)
Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)
Chan, T.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput. 9, 766–771 (1988)
Chen, Y., Lu, Z.: Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problem. Comput. Method. Appl. Mech. Eng. 199(23–24), 1415–1423 (2010)
Davis, P.J.: Circulant Matrices. American Mathematical Society, Province (1979)
Dorville, R., Mophou, G.M., Valmorin, V.S.: Optimal control of a nonhomogeneous Dirichlet boundary fractional diffusion equation. Comput. Math. Appl. 62(3), 1472–1481 (2011)
Du, N., Ge, L., Liu, W.: Adaptive finite element approximation for an elliptic optimal control problem with both pointwise and integral control constraints. J. Sci. Comput. 60(1), 160–183 (2014)
Einstein, A.E.: Investigations on the Theory of the Brownian Movement, Translation. Dover, Mineola (1956)
Frederico, G., Torres, D.: Fractional optimal control in the sense of caputo and the fractional Noethers theorem. Int. Math. Forum 3, 479–493 (2008)
Gray, R.M.: Toeplitz and Circulant Matrices: A Review. Now Publishers Inc, Hanover (2006)
Ito, K., Kunisch, K.: Augmented Lagrangian methods for nonsmooth convex optimization in Hilbert spaces. Nonlinear Anal. 41, 573–589 (2000)
Ito, K., Kunisch, K.: The primal-dual active set method for nonlinear optimal control problems with bilateral constraints. SIAM J. Control Optim. 43, 357–376 (2004)
Ito, K., Kunisch, K.: Semismooth Newton methods for time-optimal control for a class of ODEs. SIAM J. Control Optim. 48, 3997–4013 (2010)
Ito, K., Kunisch, K.: Minimal effort problems and their treatment by semismooth Newton methods. SIAM J. Control Optim. 49, 2083–2100 (2011)
Li, R., Liu, W., Ma, H., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41(5), 1321–1349 (2002)
Liu, W., Yan, N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs: C Series in Information and Computational Science 41. Science Press, Beijing (2008)
Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)
Neittaanmaki, P., Tiba, D., Dekker, M.: Optimal Control of Nonlinear Parabolic Systems: Theory: Algorithms and Applications. Marcel Dekker, New York (1994)
Niu, H., Yang, D.: Finite element analysis of optimal control problem governed by Stokes equations with \(L^2\)-norm state-constraints. J. Comput. Math. 29, 589–604 (2011)
Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984)
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Roos, H., Reibiger, C.: Numerical analysis of a system of singularly perturbed convection–diffusion equations related to optimal control. Numer. Math. Theor. Meth. Appl. 4, 562–575 (2011)
Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993)
Strang, G.: A proposal for Toeplitz matrix calculations. Stud. Appl. Math. 74(2), 171–176 (1986)
Tian W., Zhou H., Deng W.: A class of second order difference approximations for solving space fractional diffusion equations. arXiv:1201.5949 [math.NA]
Vallejos, M.: Multigrid methods for elliptic optimal control problems with pointwise state constraints. Numer. Math. Theor. Meth. Appl. 5, 99–109 (2012)
Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)
Wang, H., Du, N.: A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation. J. Comput. Phys. 253, 50–63 (2013)
Wang, H., Wang, K., Sircar, T.: A direct \(O(N log^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)
Wang, H., Yang, D.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51, 1088–1107 (2013)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the National Natural Science Foundation of China under Grants 11371229, 91130010, and 11471194, by the National Science Foundation under Grants EAR-0934747 and DMS-1216923 and, by the China Scholarship Council (File No. 201308370102).
Rights and permissions
About this article
Cite this article
Du, N., Wang, H. & Liu, W. A Fast Gradient Projection Method for a Constrained Fractional Optimal Control. J Sci Comput 68, 1–20 (2016). https://doi.org/10.1007/s10915-015-0125-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-015-0125-1