The Staggered DG Method is the Limit of a Hybridizable DG Method. Part II: The Stokes Flow | Journal of Scientific Computing Skip to main content
Log in

The Staggered DG Method is the Limit of a Hybridizable DG Method. Part II: The Stokes Flow

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We show that the staggered discontinuous Galerkin (SDG) method (Kim et al. in SIAM J Numer Anal 51:3327–3350, 2013) for the Stokes system of incompressible fluid flow can be obtained from a new hybridizable discontinuous Galerkin (HDG) method by setting its stabilization function to zero at some suitably chosen element faces and by letting it go to infinity at all the remaining others. We then show that, as a consequence, the SDG method immediately acquires three new properties all inherited from this limiting HDG method, namely, its efficient implementation (by hybridization), its superconvergence properties, and its postprocessing of the velocity. In particular, the postprocessing of the velocity is \(\varvec{H}(\mathrm {div})\)-conforming, weakly divergence-free and converges with order \(k+2\) where \(k>0\) is the polynomial degree of the approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chung, E., Cockburn, B., Fu, G.: The staggered DG method is the limit of a hybridizable DG method. SIAM J. Numer. Anal. 52, 915–932 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chung, E., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47, 3820–3848 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comp. 77, 1887–1916 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element fitted for enforcing weak stress symmetry. Math. Comp. 79, 1331–1349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of an HDG method for Stokes flow. Math. Comp. 80, 723–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Schötzau, D., Wang, J.: Discontinuous Galerkin methods for incompressible elastic materials. Comput. Methods Appl. Mech. Eng. 195, 3184–3204 (2006). ( C. Dawson, Ed)

    Article  MATH  Google Scholar 

  8. Cockburn, B., Shi, K.: Conditions for superconvergence of HDG methods for Stokes flow. Math. Comp. 82, 651–671 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Sayas, F.-J.: Divergence-conforming HDG methods for Stokes flows. Math. Comp. 83, 1571–1598 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Franca, L.P., Stenberg, R.: Error analysis of some Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28, 1680–1697 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, H., Chung, E., Lee, C.: A staggered discontinuous Galerkin method for the Stokes system. SIAM J. Numer. Anal. 51, 3327–3350 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44, 58–62 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nédélec, J.-C.: Mixed finite elements in \({\bf R}^{3}\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199, 582–597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stenberg, R.: Some new families of finite elements for the Stokes equations. Numer. Math. 56, 827–838 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosheng Fu.

Additional information

Eric Chung: Supported in part by the Hong Kong RGC General Research Fund (Project: 401010).

Bernardo Cockburn: Supported in part by the National Science Foundation (Grant DMS-0712955) and by the University of Minnesota Supercomputing Institute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, E., Cockburn, B. & Fu, G. The Staggered DG Method is the Limit of a Hybridizable DG Method. Part II: The Stokes Flow. J Sci Comput 66, 870–887 (2016). https://doi.org/10.1007/s10915-015-0047-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0047-y

Keywords

Mathematics Subject Classification

Navigation