Lossy Compression in Optimal Control of Cardiac Defibrillation | Journal of Scientific Computing
Skip to main content

Lossy Compression in Optimal Control of Cardiac Defibrillation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents efficient computational techniques for solving an optimization problem in cardiac defibrillation governed by the monodomain equations. Time-dependent electrical currents injected at different spatial positions act as the control. Inexact Newton-CG methods are used, with reduced gradient computation by adjoint solves. In order to reduce the computational complexity, adaptive mesh refinement for state and adjoint equations is performed. To reduce the high storage and bandwidth demand imposed by adjoint gradient and Hessian-vector evaluations, a lossy compression technique for storing trajectory data is applied. An adaptive choice of quantization tolerance based on error estimates is developed in order to ensure convergence. The efficiency of the proposed approach is demonstrated on numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. ALUGrid home page. ALUGrid: http://www.mathematik.uni-freiburg.de/IAM/Research/alugrid/

  2. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82(2), 121–138 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bastian, P., Heimann, F., Marnach, S.: Generic implementation of finite element methods in the distributed and unified numerics environment (DUNE). Kybernetika 46(2), 294–315 (2010)

    MATH  MathSciNet  Google Scholar 

  4. Belhamadia, Y., Fortin, A., Bourgault, Y.: Towards accurate numerical method for monodomain models using a realistic heart geometry. Math. Biosci. 220(2), 89–101 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourgault, Y., Coudiére, Y., Pierre, C.: Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Anal. Real World Appl. 10(1), 458–482 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Britton, N.F.: Reaction–Diffusion Equations and Their Application to Biology. Academic Press, London (1986)

    Google Scholar 

  7. Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Autom. J. IFAC 34(10), 1205–1217 (1998)

    Article  MATH  Google Scholar 

  8. Choi, H., Hinze, M., Kunisch, K.: Instantaneous control of backward-facing step flows. Appl. Numer. Math. 31, 133–158 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Deuflhard, P.: Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  10. Deuflhard, P., Leinen, P., Yserentant, H.: Concepts of an adaptive hierarchical finite element code. IMPACT Comput. Sci. Eng. 1(1), 3–35 (1989)

    Article  MATH  Google Scholar 

  11. Deuflhard, P., Nowak, U.: Extrapolation integrators for quasilinear implicit ODEs. In: Deuflhard, P., Engquist, B. (eds.) Large Scale Scientific Computing, volume 7 of Progress in Scientific Computing, pp. 37–50. Birkhäuser (1987)

  12. Deuflhard, P., Weiser, M.: Adaptive numerical solution of PDEs. de Gruyter, (2012)

  13. Franzone, P.C., Deuflhard, P., Erdmann, B., Lang, J., Pavarino, L.F.: Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Numer. Anal. 28(3), 942–962 (2006)

    MATH  Google Scholar 

  14. Götschel, S., Weiser, M.: Lossy compression for PDE-constrained optimization: adaptive error control. ZIB Report 13–27 (2013)

  15. Götschel, S., Weiser, M., Schiela, A.; Solving optimal control problems with the Kaskade 7 finite element toolbox. In: Dedner, A., Flemisch, B., Klöfkorn, R. (eds.) Advances in DUNE, pp. 101–112. Springer (2012)

  16. Gratton, S., Toint, P., Tshimanga, J.: Inexact range-space Krylov solvers for linear systems arising from inverse problems. Technical Report 09/20, FUNDP—University of Namur, Belgium (2009)

  17. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  18. Heinkenschloss, M., Herty, M.: A spatial domain decomposition method for parabolic optimal control problems. J. Comput. Appl. Math. 201, 88–111 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Henriquez, C.S.: Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng. 21, 1–77 (1993)

    MathSciNet  Google Scholar 

  20. Hinze, M., Kunisch, K.: Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40(3), 925–946 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ito, K., Kunisch, K.: Asymptotic properties of receding horizon optimal control problems. SIAM J. Control Optim. 40, 1585–1610 (2001)

    Article  MathSciNet  Google Scholar 

  22. Kunisch, K., Nagaiah, C., Wagner, M.: A parallel Newton–Krylov method for optimal control of the monodomain model in cardiac electrophysiology. In: Computing and Visualization in Science (to appear) (2012)

  23. Kunisch, K., Wagner, M.: Optimal control of the bidomain system (I): the monodomain approximation with the Rogers–McCulloch model. Nonlinear Anal. Real World Appl. 13(4), 1525–1550 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nagaiah, C., Kunisch, K.: Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology. Appl. Numer. Math. 61, 53–65 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nagaiah, C., Kunisch, K., Plank, G.: Numerical solution for optimal control of the reaction–diffusion equations in cardiac electrophysiology. Comput. Optim. Appl. 49, 149–178 (2011). doi:10.1007/s10589-009-9280-3

    Google Scholar 

  26. Nielsen, B.F., Ruud, T.S., Lines, G.T., Tveito, A.: Optimal monodomain approximations of the bidomain equations. Appl. Math. Comput. 184(2), 276–290 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  28. Plonsey, R.: Bioelectric sources arising in excitable fibers (ALZA lecture). Ann. Biomed. Eng. 16(6), 519–546 (1988)

    Article  Google Scholar 

  29. Potse, M., Dube, B., Richer, J., Vinet, A., Gulrajani, R.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53(12), 2425–2435 (2006)

    Article  Google Scholar 

  30. Rogers, J.M., McCulloch, A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41, 743–757 (1994)

    Article  Google Scholar 

  31. Simoncini, V., Szyld, D.B.: Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM J. Sci. Comput. 25(2), 454–477 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tung, L.: A bi-domain model for describing ischemic myocardial DC potentials. PhD thesis, MIT, Cambridge, MA (1978)

  33. van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1994)

    Article  Google Scholar 

  34. von Tycowicz, C., Kälberer, F., Polthier, K.: Context-based coding of adaptive multiresolution meshes. Comput. Graph. Forum 30(8), 2231–2245 (2011)

    Article  Google Scholar 

  35. Weiser, M., Götschel, S.: State trajectory compression for optimal control with parabolic PDEs. SIAM J. Sci. Comput. 34(1), A161–A184 (2012)

    Google Scholar 

  36. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support by the Austrian Science Foundation (FWF) under SFB 032, “Mathematical Optimization and Applications in Biomedical Sciences”, the Austrian Academy of Sciences (ÖAW) and by the DFG Research Center Matheon, project F9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Götschel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götschel, S., Chamakuri, N., Kunisch, K. et al. Lossy Compression in Optimal Control of Cardiac Defibrillation. J Sci Comput 60, 35–59 (2014). https://doi.org/10.1007/s10915-013-9785-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9785-x

Keywords

Mathematics Subject Classification (2010)