Abstract
We develop a preconditioned Bayesian regression method that enables sparse polynomial chaos representations of noisy outputs for stochastic chemical systems with uncertain reaction rates. The approach is based on the definition of an appropriate multiscale transformation of the state variables coupled with a Bayesian regression formalism. This enables efficient and robust recovery of both the transient dynamics and the corresponding noise levels. Implementation of the present approach is illustrated through applications to a stochastic Michaelis–Menten dynamics and a higher dimensional example involving a genetic positive feedback loop. In all cases, a stochastic simulation algorithm (SSA) is used to compute the system dynamics. Numerical experiments show that Bayesian preconditioning algorithms can simultaneously accommodate large noise levels and large variability with uncertain parameters, and that robust estimates can be obtained with a small number of SSA realizations.
Similar content being viewed by others
References
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 9th edn. Dover, New York (1972)
Alexanderian, A., Le Maître, O.P., Najm, H.N., Iskandarani, M., Knio, O.M.: Multiscale stochastic preconditioners in non-intrusive spectral projection. J. Sci. Comput. 50, 306–340 (2012)
Andrieu, C., Moulines, E.: On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 16, 1462–1505 (2006)
Atchadé, Y.F., Rosenthal, J.S.: On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11, 815–828 (2005)
Bennett, M.R., Volfson, D., Tsimring, L., Hasty, J.: Transient dynamics of genetic regulatory networks. Biophys. J. 92(10), 3501–3512 (2007)
Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis. Addison-Wesley, Reading, MA, USA (1973). [Addison-Wesley Series in Behavioral Science: Quantitative Methods]
Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear functionals in series of fourier-hermite functionals. Ann. Math. 48, 385–392 (1947)
Carlin, B.P., Louis, T.A.: Bayesian Methods for Data Analysis, Texts in Statistical Science Series, 3rd edn. CRC Press, Boca Raton, FL, USA (2009)
Crestaux, T., Le Maitre, O.P., Martinez, J.-M.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94(7), 1161–1172 (2009). Special Issue on Sensitivity Analysis
Liu, W.E.D., Vanden-Eijnden, E.: Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales. J. Comput. Phys. 221(1), 158–180 (2007)
Ernst, O.G., Mugler, A., Starkloff, H.-J., Ullmann, E.: On the convergence of generalized polynomial chaos expansions. ESAIM Math Model Numer Anal 46, 317–339 (2012)
Ethier, S.N., Kurtz, T.G.: Markov Processes. Characterization and Convergence [Wiley Series in Probability and Mathematical Statistics] (1986)
Tempone, R., Nobile, F., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)
Ganapathysubramanian, B., Zabaras, N.: Sparse grid collacation schemes for stochastic natural convection problems. J. Comput. Phys. 225, 652–685 (2007)
Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Texts in Statistical Science Series, 2nd edn. Chapman & Hall/CRC, Boca Raton, FL, USA (2004)
Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algor. 18, 209–232 (1998)
Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach, 2nd edn. Dover, New York (2002)
Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)
Gillespie, D.T.: A rigorous derivation of the chemical master equation. Phys. A: Stat. Mech. Appl. 188(13), 404–425 (1992)
Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716–1733 (2001)
Gillespie, D.T., Petzold, L.R.: Improved leap-size selection for accelerated stochastic simulation. J. Chem. Phys. 119(16), 8229–8234 (2003)
Haario, H., Saksman, E., Tamminen, J.: An adaptive metropolis algorithm. Bernoulli 7, 223–242 (2001)
Janson, S.: Gaussian Hilbert Spaces. Cambridge University Press, Cambridge (1997)
Keese, A.: Numerical Solution of Systems with Stochastic Uncertainties: A General Purpose Framework for Stochastic Finite Elements. PhD thesis, Tech. Univ. Braunschweigh (2004)
Keese, A., Matthies, H.G.: Numerical Methods and Smolyak Quadrature for Nonlinear Stochastic Partial Differential Equations. Technical report, Institute of Scientific Computing TU Braunschweig Brunswick (2003)
Le Maître, O.P., Knio, O.M.: Spectral Methods for Uncertainty Quantification With Applications to Computational Fluid Dynamics [Scientific Computation]. Springer, New York (2010)
Le Maître, O.P., Mathelin, L., Knio, O.M., Hussaini, M.Y.: Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discret. Continu. Dyn. Syst. 28(1), 199–226 (2010)
Le Maître, O.P., Najm, H.N., Pebay, P.P., Ghanem, R.G., Knio, O.M.: Multi-resolution-analysis scheme for uncertainty quantification in chemical systems. SIAM J. Sci. Comput. 29(2), 864–889 (2007)
Ma, X., Zabaras, N.: An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228(8), 3084–3113 (2009)
Najm, H.N.: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Ann. Rev. Fluid Mech. 41, 35–52 (2009)
Najm, H.N., Debusschere, B., Marzouk, Y., Widmer, S., Le Maître, O.P.: Uncertainty quantification in chemical systems. Int. J. Numer. Eng. 80(6), 789–814 (2009)
Petras, K.: On the smolyak cubature error for analytic functions. Adv. Comput. Math. 12, 71–93 (2000)
Petras, K.: Fast calculation in the smolyak algorithm. Numer. Algor. 26, 93–109 (2001)
Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method. J. Chem. Phys. 119(24), 12784–12794 (2003)
Reagan, M.T., Najm, H.N., Debusschere, B.J., Le Maître, O.P., Knio, O.M., Ghanem, R.G.: Spectral stochastic uncertainty quantification in chemical systems. Combust. Theory Model. 8, 607–632 (2004)
Reagan, M.T., Najm, H.N., Ghanem, R.G., Knio, O.M.: Uncertainty quantification in reacting flow simulations through non-intrusive spectral projection. Combust. Flame 132, 545–555 (2003)
Rizzi, F., Najm, H.N., Debusschere, B.J., Sargsyan, K., Salloum, M., Adalsteinsson, H., Knio, O.M.: Uncertainty quantification in MD simulations. Part I: Forward propagation. Multiscale Model. Simul. 10(4), 1428–1459 (2012)
Rizzi, F., Najm, H.N., Debusschere, B.J., Sargsyan, K., Salloum, M., Adalsteinsson, H., Knio, O.M.: Uncertainty quantification in MD simulations. Part II: Bayesian inference of force-field parameters. Multiscale Model. Simul. 10(4), 1460–1492 (2012)
Roberts, G.O., Rosenthal, J.S.: Examples of adaptive MCMC. J. Comput. Graph. Stat. 18, 349–367 (2009)
Salloum, M., Sargsyan, K., Jones, R., Debusschere, B., Najm, H.N., Adalsteinsson, H.: A stochastic multiscale coupling scheme to account for sampling noise in atomistic-to-continuum simulations. Multiscale Model. Simul. 10, 550–584 (2012)
Saltelli, A.: Sensitivity analysis for importance assessment. Risk Anal. 22(3), 579–590 (2002)
Sargsyan, K., Debusschere, B., Najm, H.N., Le Maître, O.P.: Spectral representation and reduced order modeling of the dynamics of stochastic reaction networks via adaptive data partitioning. SIAM J. Sci. Comput. 31, 4395–4421 (2010)
Sargsyan, K., Debusschere, B., Najm, H.N., Marzouk, Y.: Bayesian inference of spectral expansions for predictability assessment in stochastic reaction networks. J. Comput. Theor. Nanosci. 6(10), 2283–2297 (2009)
Sargsyan, K., Safta, C., Debusschere, B., Najm, H.: Multiparameter spectral representation of noise-induced competence in bacillus subtilis. IEEE/ACM Trans. Comput. Biol. Bioinform. (2012). doi:10.1109/TCBB.2012.107
Schlögl, F.: On thermodynamics near a steady state. Zeitschrift für Physik A Hadrons and Nuclei 248(5), 446–458 (1971)
Sheen, D.A., Wang, H.: Combustion kinetic modeling using multispecies time histories in shock-tube oxidation of heptane. Combust. Flame 158, 645–656 (2011)
Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963)
Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001). The Second IMACS Seminar on Monte Carlo Methods
Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008)
Villegas, M., Augustin, F., Gilg, A., Hmaidi, A., Wever, U.: Application of the polynomial chaos expansion to the simulation of chemical reactors with uncertainties. Math. Comput. Simul. 82, 805–817 (2012)
Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)
Wilkinson, D.J.: Stochastic Modelling for Systems Biology [Chapman & Hall/CRC Mathematical and Computational Biology Series]. Chapman & Hall/CRC, Boca Raton, FL, USA (2006)
Xiu, D.B., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)
Acknowledgments
This work was supported by the US Department of Energy (DOE) under Award Numbers DE-SC0001980 and DE-SC0008789. The work of OLM is partially supported by the French Agence Nationale pour la Recherche (Project ANR-2010-Blan-0904) and the GNR MoMaS funded by Andra, Brgm, Cea, Edf, and Irsn. Finally, would like to thank the reviewer for helpful comments on improving this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Alexanderian, A., Rizzi, F., Rathinam, M. et al. Preconditioned Bayesian Regression for Stochastic Chemical Kinetics. J Sci Comput 58, 592–626 (2014). https://doi.org/10.1007/s10915-013-9745-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-013-9745-5