Probabilistic Upper Bounds for the Matrix Two-Norm | Journal of Scientific Computing Skip to main content
Log in

Probabilistic Upper Bounds for the Matrix Two-Norm

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop probabilistic upper bounds for the matrix two-norm, the largest singular value. These bounds, which are true upper bounds with a user-chosen high probability, are derived with a number of different polynomials that implicitly arise in the Lanczos bidiagonalization process. Since these polynomials are adaptively generated, the bounds typically give very good results. They can be computed efficiently. Together with an approximation that is a guaranteed lower bound, this may result in a small probabilistic interval for the matrix norm of large matrices within a fraction of a second.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. www.netlib.org/svdpack/

  2. Available via www.math.uri.edu/\(\sim \)jbaglama/

  3. We hereby would like to make a case for the replacement of normest in Matlab by a procedure based on Lanczos bidiagonalization.

References

  1. Baglama, J., Reichel, L.: Augmented implicitly restarted Lanczos bidiagonalization methods. SIAM J. Sci. Comput. 27, 19–42 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baglama, J., Reichel, L.: Restarted block Lanczos bidiagonalization methods. Numer. Algorithms 43, 251–272 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bischof, C.H.: Incremental condition estimation. SIAM J. Matrix Anal. Appl. 11, 312–322 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bischof, C.H., Lewis, J.G., Pierce, D.J.: Incremental condition estimation for sparse matrices. SIAM J. Matrix Anal. Appl. 11, 644–659 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Indust Appl. Math. Ser. B Numer. Anal. 2, 205–224 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  7. Hochstenbach, M.E.: A Jacobi-Davidson type SVD method. SIAM J. Sci. Comput. 23, 606–628 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  9. Kuczyński, J., Woźniakowski, H.: Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start. SIAM J. Matrix Anal. Appl. 13, 1094–1122 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Parlett, B.N.: The Symmetric Eigenvalue Problem. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1998)

    Book  MATH  Google Scholar 

  11. Stoll, M.: A Krylov-Schur approach to the truncated SVD. Linear Algebra Appl. 436, 2795–2806 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. The Matrix Market. http://math.nist.gov/MatrixMarket, a repository for test matrices

  13. Van Dorsselaer, J.L.M., Hochstenbach, M.E., Van der Vorst, H.A.: Computing probabilistic bounds for extreme eigenvalues of symmetric matrices with the Lanczos method. SIAM J. Matrix Anal. Appl. 22, 837–852 (2000)

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges support by an NWO Vidi grant. Helpful comments from a referee were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel E. Hochstenbach.

Additional information

Supported by an NWO Vidi grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochstenbach, M.E. Probabilistic Upper Bounds for the Matrix Two-Norm. J Sci Comput 57, 464–476 (2013). https://doi.org/10.1007/s10915-013-9716-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9716-x

Keywords

Mathematics Subject Classification (2000)

Navigation