Abstract
In this paper, we investigate the generalized Jacobi approximation in multiple dimensions. Some results on the generalized Jacobi orthogonal approximation and the generalized Jacobi-Gauss-Lobatto interpolation are established, which serve as useful tools in spectral and pseudospectral methods for differential equations of high order, whose coefficients might blow up or degenerate. As examples of applications, we provide the spectral schemes for two problems of fourth order, with Dirichlet boundary condition and mixed boundary condition respectively. Their spectral accuracy are proved. Efficient algorithms are implemented. Numerical results demonstrate the high accuracy of suggested algorithms.




Similar content being viewed by others
References
Babus̆ka, I., Guo, B.Q.: Direct and inverse approximation theorems for the p-version of finite element method in the framework of weighted Besov spaces, Part I: approximability of functions in the weighted Besov space. SIAM J. Numer. Anal. 39, 1512–1538 (2001)
Belhachmi, Z., Bernardi, C., Karageorghis, A.: Spectral element discretization of the circular driven cavity, Part II: the bilaplacian equation. SIAM J. Numer. Anal. 38, 1926–1960 (2001)
Bernardi, C., Dauge, M., Maday, Y.: In: Ciarlet, P.G., Lions, P.L. (eds.) Spectral Methods for Axisymmetric Domains. Series in Applied Mathematics, vol. 3. Gauhtier-Villars & North-Holland, Paris (1999)
Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Techniques of Scientific Computing, vol. 5, pp. 209–486. Elsevier, Amsterdam (1997)
Bialecki, B., Karageorghis, A.: A Legendre spectral Galerkin method for the biharmonic Dirichlet problem. SIAM J. Sci. Comput. 22, 1549–1569 (2000)
Bjørstad, P.E., Tjøstheim, B.P.: Efficient algorithms for solving a fourth-order equation with spectral-Galerkin method. SIAM J. Sci. Comput. 18, 621–632 (1997)
Boyd, J.P.: Spectral methods using rational basis functions on an infinite interval. J. Comput. Phys. 69, 112–142 (1987)
Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, Mineola (2001)
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods, Fundamentals in Single Domains. Springer, Berlin (2006)
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)
Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials. Appl. Numer. Math. 58, 1224–1244 (2008)
Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991)
Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM-CBMS, Philadelphia (1977)
Guo, B.-y.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)
Guo, B.-y.: Gegenbauer approximation and its applications to differential equations on the whole line. J. Math. Anal. Appl. 226, 180–206 (1998)
Guo, B.-y.: Jacobi spectral approximation and its applications to differential equations on the half line. J. Comput. Math. 18, 95–112 (2000)
Guo, B.-y.: Gegenbauer approximation in certain Hilbert spaces and its applications to singular differential equations on the whole line. SIAM J. Numer. Anal. 37, 621–645 (2000)
Guo, B.-y.: Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. J. Math. Anal. Appl. 243, 373–408 (2000)
Guo, B.-y., He, L.-p.: The fully discrete Legendre spectral approximation of two-dimensional unsteady incompressible fluid flow in stream function form. SIAM J. Numer. Anal. 35, 146–176 (1998)
Guo, B.-y., Jia, H.-l.: Spectral method on quadrilaterals. Math. Comput. 79, 2237–2264 (2010)
Guo, B.-y., Shen, J.: Irrational approximations and their applications to partial differential equations in exterior domains. Adv. Comput. Math. 28, 237–267 (2008)
Guo, B.-y., Shen, J.: On spectral approximations using modified Legendre rational functions: application to the Korteweg de Vries equation on the half line. Indiana Univ. Math. J. 50, 181–204 (2001)
Guo, B.-y., Shen, J., Wang, L.-l.: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27, 305–322 (2006)
Guo, B.-y., Shen, J., Wang, L.-l.: Generalized Jacobi polynomials/Functions and their applications. Appl. Numer. Math. 59, 1011–1028 (2009)
Guo, B.-y., Sun, T., Zhang, C.: Jacobi and Laguerre quasi-orthogonal approximations and related interpolations. Math. Comp. (2012). doi:10.1090/S0025-5718-2012-02614-7
Guo, B.-y., Wang, L.-l.: Error analysis of spectral method on a triangle. Adv. Comput. Math. 26, 473–496 (2007)
Guo, B.-y., Wang, L.-l.: Jacobi approximations and Jacobi-Gauss-type interpolations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 28, 1–41 (2004)
Guo, B.-y., Wang, T.-j.: Composite Laguerre-Legendre spectral method for fourth order exterior problems. J. Sci. Comput. 44, 255–285 (2010)
Guo, B.-y., Wang, Z.-q.: Legendre rational approximation on the whole line. Sci. China Ser. A 47(Suppl.), 155–164 (2004)
Guo, B.-y., Wang, Z.-q., Wan, Z.-s., Chu, D.: Second order Jacobi approximation with applications to fourth order differential equations. Appl. Numer. Math. 55, 480–502 (2005)
Guo, B.-y., Yi, Y.-g.: Generalized Jacobi rational spectral method and its applications. J. Sci. Comput. 43, 201–238 (2010)
Li, Y.-y., Wang, L.-L., Li, H.-y., Ma, H.-p.: A new spectral method on triangles. In: Proceeding od for the International Conference on Spectral and High-Order Methods (ICOSAHOMO09). Lecture Notes in Computational Sciences and Engineering, pp. 237–246. Springer, Berlin (2010)
Ma, H., Sun, W.: A Legendre-Petrov-Galerkin and Chebyshev collocation method for third-order differential equations. SIAM J. Numer. Anal. 38, 1425–1438 (2000)
Ma, H., Sun, W.: Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation. SIAM J. Numer. Anal. 39, 1380–1394 (2001)
Owens, R.G.: Spectral approximation on the triangle. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 454, 857–872 (1998)
Shen, J.: Efficient spectral-Galerkin method, I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)
Shen, J., Wang, L.-l., Li, H.-y.: A triangular spectral element method using fully tensorial rational basis functions. SIAM J. Numer. Anal. 47, 1619–1650 (2009)
Sherwin, S.J., Karniadakis, G.E.: A new triangular and tetrahedral basis for high-order finite element methods. Int. J. Numer. Methods Eng. 38, 3775–3802 (1995)
Szegö, G.: Orthogonal Polynomials. Amer. Math. Soc., Providence (1959)
Yi, Y.-g., Guo, B.-y.: Generalized Jacobi rational spectral method on the half line. Adv. Comput. Math. 37, 1–37 (2012)
Acknowledgements
The work of this author is supported in part by NSF of China No. 11171227, and Fund for E-institute of Shanghai Universities No. E03004.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sun, T., Guo, By. Generalized Jacobi Approximation in Multiple Dimensions and Its Applications. J Sci Comput 55, 327–350 (2013). https://doi.org/10.1007/s10915-012-9633-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-012-9633-4